
The Tree-to-Tree Correction Problem 

K U O - C H U N G  TAI 

North Carolina State Umverslty, Ralezgh, North Carohna 

ABSTRACT The tree-to-tree correctmn problem Is to determine, for two labeled ordered trees T and T', the 
distance from T to T' as measured by the mlmmum cost sequence of edit operaUons needed to transform T into 
T' The edit operations investigated allow changing one node of a tree into another node, deleting one node from 
a tree, or inserting a node into a tree An algorithm Is presented which solves this problem m time O(V* V'*LZ* 
L'2), where V and V' are the numbers of nodes respectively of T and T', and L and L' are the maximum depths 
respectively of T and T' Possible apphcatmns are to the problems of measuring the similarity between trees, 
automatic error recovery and correction for programming languages, and determining the largest common 
substructure of two trees 
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1. introduction 

The  string-to-string correct ion problem, which is to de termine  the distance between two 
strings as measured  by the m i n i m u m  cost sequence o f  edit operat ions  needed to t ransform 
one string into the other,  was invest igated in [7, 8, 10, 12, 13, 14]. In  [13] Wagne r  and 
Fischer  considered the fol lowing three edit  operations: changing a character  into another  
character,  delet ing a character,  and insert ing a character;  and they presented an a lgor i thm 
that  computes  the distance be tween two strings in t ime O(m* n), where m and n are the 
lengths o f  the two given strings. 

The  var ious at tempts  to achieve h igh-d imens ional  general izat ions o f  s tnngs include 
trees, graphs, webs, and plex structures. Trees  are considered the most  impor tant  nonl inear  
structures arising in compute r  a lgon thms  [6]. Tree  automata ,  tree grammars ,  and their  
apphcat ions  for syntactic pat tern recogni t ion have been studied (e.g. [2]). 

In  this paper  we define the not ion  o f  distance be tween two labeled ordered  trees and 
present an a lgor i thm that  computes  the distance in t ime O(V* V'* L2* L'~), where  V and 
V' are the numbers  o f  nodes o f  the two trees and L and L '  are the m a x i m u m  depths o f  the 
two trees. The  set o f  a l lowable edit  operat ions  includes: (1) changing  one node into another  
node  (changing the label o f  the node);  (2) delet ing one node  f rom a tree; and (3) insert ing 
a node  into a tree. 

Since each string can be considered a tree o f  depth  two (with a vnrtual root added),  the 
string-to-string correct ion p rob lem is jus t  a special case o f  the tree-to-tree correct ion 
p rob lem with L = L '  = 2. Possible applicat ions o f  the not ion o f  distance be tween two trees 
are discussed at the end o f  this paper.  

2. Edit Operations on Trees 

In this paper  all trees we discuss are rooted, ordered,  and labeled. Let  T be a tree. I Tt 
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denotes the number of  nodes of  T. T[i] denotes the node of  T whose position in the 
preorder for nodes of  T is i. The preorder traversal on T is to first visit the root of  T and 
then traverse the subtrees of  T from left to right, each subtree traversed in preorder. The 
following diagram illustrates how nodes of  a tree T are denoted: 

Assume that T[iiI and T[i2] are nodes o f  T with r[hl being an ancestor o f  LEMMA 2.1. 
T[i2]. Then 

(1) il </2;  
(2) For any i such that h < i _< i2, T[i] is a descendant o f  T[il]; 
(3) For the father T[ia] of  T[i2], T[za] is T[t2 - 1] or an ancestor o f  T[i2 - 1], and T[i3] 

is on the path f rom T[il] to T[i2 - l]. 
PROOF. The proof  follows from the definmon of  preorder traversal. Q.E.D. 
Let A denote the null node. An edit operation is written b ~ c, where each of  b and c 

is either a node or A. b ~ c is a change operation if  b # A and c # A, a delete operation 
if b # A = c, and an insert operation if b = A # c. Let T' be the tree that results from the 
application of  an edit operation b ~ c to tree T; this is written T = >  T' via b ~ c. The 
relations between T and T'  are descnbed as follows: 

(1) I f  b ~ c is a change operation, then node b is replaced by node c, i.e., 

T = a n d  T t = 

for some trees T1 and T2. 
(2) I f  b --~ c is a delete operation, then node b is deleted, i.e., 

T = a n d  T '  - 

for some trees T1 and T2. 
(3) I f  b ~ c is an insert operation, then node c is imerted,  i.e., 

T = a n d  T '  
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for some trees T~ and T2. 
Each node of  a tree except the root is associated with a unique edge connecting the node 

and its father. For the deletion or insertion of  a node, both the node and its associated 
edge are included. Without loss of  generahty it may be assumed that the roots of  all trees 
have the same umque label and that the root of  each tree remains unchanged during 
editing. Examples are given below to illustrate the appl!caUons of  the three edit operations. 

R R 

I I 
~F "> A via B -~ C 

E F 

R R 

/k  A 
A A => A E F 

/ \ 
E F 

via B-* A 

R R 

A A 
A E F "> A ~ via A + C 

/ \ 
E F 

Let S be a sequence ;~, ;2, , ;m of edit operations. S transforms tree T to tree T' if 
there is a sequence of trees To, T~, , Tm such that T = To, T' = Tm and T,-, => T, via 
;, for l <_ i_< m. 

Let r be an arbitrary cost function which assigns to each edlt operation b ~ c a 
nonnegative real number r(b ~ c). Extend r to a sequence of edit operatlons S = ;i, ;2, 

, ;m by letting r(S) = ~_, r(;,). Without loss of generality it may be assumed that 
r(b ~ b) = 0 and that r(b ---> a) + r(a ~ c) _> r(b --> c). 

The dtstance d(T, T') from tree T to tree T' is defined to be the minimum cost of  all 
sequences of  edit operations which transform T into T', i.e., 

d(T, T') = min{r(S)lS is a sequence of  edit operations which transforms T into T'}. 

The number of  different sequences of  edit operations which transform T into T'  is infimte. 
Therefore, it is impossible to enumerate all valid sequences and find the minimum cost In 
the next section, structures called mappings are defined so that d(T, T') can be computed 
in polynomial time. 

3 Mapping; 

Intuitively, a mapping is a description of  how a sequence of  edit operations transforms T 
into T', ignoring the order in which edit operations are applied. 

Consider the following diagram: 

T [ , ]  . . . . . . . . . . . . . .  - . . . . .  T ' [ ! ]  

Z[2~ ........... T" [ Z ~ S ]  
T[3] T[4] ............. T'[3] .......... T [6] 

A dotted line from T[z] to T'[j] indicates that T[t] should be changed to T'[j] if T[i] # 
T'[j], or that T[i] remains unchanged, but becomes T'[j], If T[i] = T'[j]. Nodes of  T not 
touched by dotted lines are to be deleted and nodes of  T' not touched are to be inserted. 
Such a diagram is called a mapping, which shows a way of  transforming T to T'. Formally, 
we define a triple (M, T, T') to be a mappmg from T to T', where M is any set of  pairs of  
integers (h J) satisfying: 
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(1)  1 _< i ~< I TI, 1 ~ j  _< I T'[; 
(2) For any two pairs (il, j l)  and (/2, j2) in M, 

(a) ix = t2 iffJl = j2; 
(b) il < /2  iffj l  < J2; 
(c) T[ix] is an ancestor (descendant) of  T[12] lff 

T ' [ j l ]  is an ancestor (descendant) of  T'[j2]. 

Where there is no resulting confusion, we do not distinguish between the triple (M, T, T') 
and the set M. 

Each pair (i,j) in M IS interpreted to be a line segment joining T[i] and T'[j]. Condition 
(2a) ensures that each node of both T and T'  is touched by at most one line. Conditions 
(2b) and (2c) ensure that after untouched nodes of  both T and T'  are deleted, T and T'  
become s~milar (i.e., they have the same structure), and the one-to-one correspondence 
between nodes of  T and T'  which preserves the structure is indicated exactly by the hnes 
of  M. By deleting untouched nodes, the preceding diagram becomes: 

Til l  . . . . . . . . . . . . . . . . .  - - -  T ' D ]  

T [ 2 ~  . . . . . . . . . . . . . .  T" [ 2 ~  
r[5] . . . . . . . . . . . . . . . . . . . .  T [6] 1 

T[4] . . . . . . . . . . . . . . . . . . .  T' [3] 

Let M he a mapping from T to T' and let ! and J be the sets of  untouched nodes of  T 
and T' respectively. We define the cost of M: 

cost(M) = ~ r(T[t]--~ T ' [ j ] )  + ~ r ( r [ t ]  ~ A) + ~ r ( A ~  T'[j]).  
O,3)~M t~l J~J 

Thus, the cost of  M is just the cost of  the sequence of edit operations which consists of  a 
change operation T[t] --~ T'[j] for each line (i, j)  of M, a delete operation T[t] ~ A for 
each node T[i] not touched by a line of  M, and an insert operation A ~ T'[j] for each 
node T'[j] not touched by a hne of M. 

In order to show that d(T, T') can be determined by a minimum cost mapping from T 
to T', the following two lemmas need to be verified: 

LEMMA 3.1. Let M1 be a mapping from T1 to T2 and let M2 be a mapping from T2 to T3. 
Then: 

(1) M1 o M2 = {(i, k)[(i, j)  ~ Mi and (j, k) E M2 for some j} ts a mapping from T1 to T3; 
(2) cost(M1 o M2) --< cost(M1) + cost(M2). 
PROOF. 
(1) Let (il, k~) and (/2, k2) be two lines of  Mi o M2. Then there exist Jl and./2 such that 

(il, Jl), (i2, j2) E M1 and (J1, kl), (j2, k2) E M2. By the defimtion of  a mapping: 
(a) (tl = /2  iff j t  = J2) and (j~ ffi j2 iff k~ = k2); 
(b) (ix < i2 iffjx < d2) and (j~ < j2 iff k~ < k2); 
(c) (Tl[il] is an ancestor (descendant) of  T1[i2] iff 

T2[Ji] is an ancestor (descendant) of  T2[j2]), and 
(T2[J1] is an ancestor (descendant) of  Tz[J2] iff 
T3[kl] is an ancestor (descendant) of  Tz[k2]). 

Therefore, M~ o M2 is a mapping from T1 to T3. 
(2) The proof  that cost(M1 o M2) -< cost(M~) + cost(M2) follows closely the proof  of  

Lemma 1 in [13] and is omitted. This proof relies on the assumption that r(b ~ c) -< 
r ( b ~  a) + r ( a ~  c). Q.E.D. 

LEMMA 3.2. For any sequence S of  edtt operations which transforms T into T', there 
exists a mapping M from T to T' such that cost(M) <_ r(S). 

PROOF. It can be shown by induction on m that if S = sl, s2, , Sm is a sequence of 
edit operations and To, T~, , Tm is the sequence of trees from To to Tm via S, then there 
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exists a mapping M from To to Tm such that cost(M) _< r(S). This proof  is similar to the 
proof  of  Theorem 1 in [13] and is omitted. Q.E.D. 

Since d(T, T') = min{cost(S) lS is a sequence of  edit operations which transforms T into 
T'}, we have: 

THEOREM 3.1 d(T, T') = min{cost (M)lM is a raappingfrom T to T'}. 
Hence the search for a minimal cost sequence of  edit operations has been reduced to a 

search for a minimal cost mapping. 
Let T(il: /2) denote the portion of  T which consists of  nodes T[i~], T[il + 1] . . . . .  

T[i2], and their associated edges, where il is an ancestor of  /2; and similarly define 
T'[j~:j2]. Let D(i + l , j  + 1) be the distance from tree T(I: i + 1) to tree T ' ( I : j  + 1), i.e., 
D(i + l , j  + I) = d(T(l: i + 1), T ' ( I : j  + 1)). Consider the following diagram: 

T[.i] 

T ( I : t ÷ I )  

T'[I] 

t' \T' [j ] 
T' ( l : j + i )  

Suppose M is a minimum cost mapping from T(I:  i + 1) to T ' ( l : j  + 1), i.e., cost(M) = 
D(i + l , j  + 1). Then at least one of the following three cases must hold: 

Case 1: T[i + 1] is not touched by a line of  M. Then cost(M) = D ( i , j  + 1) + 
r (T[ i  + 1] ~ A), corresponding to the cost of  transforming T(I:  t) to T ' ( I : j  + 1) plus the 
cost of  deleting T[i + 1]. 

Case 2: T ' [ j  + 1] is not touched by a line of  M. Then cost(M) = D(i + l, j )  + 
r (A  ~ T ' [ j  + 1]), corresponding to the cost of  transforming T(I: i + 1) to T ' ( I : j )  plus the 
cost of  inserting T ' [ j  + 1]. 

Case 3: T[i + 1] and T ' [ j  + 1] are touched by lines (i + 1, q) and ( p , j  + l) of  M. By 
the definition of  a mapping, (i + 1 = p  i f fq  = j  + l) and (i + l > p  i f fq  > j  + 1). Since 
i +  1 _>p and j +  1 _>q, i +  1 - - p  and j +  1 = q. Thus, T [ i +  l ] a n d  T ' [ j +  1] are both 
touched by the same line (i + 1, j + 1). Note that if  M '  = M - {(i + l, j + l)) is not a 
minimum cost mapping from T( l : / )  to T'(I:  j), then 

cost(m) = cost(m') + r(T[i  + l] --, T ' [ j  + 1]) > D(i,j)  + r(T[s + 1] ~ T ' [ j  + l]). 

Thus, it may be true that D(i + 1, j + 1) > D(i, j )  + r(T[i  + 1] ~ T ' [ j  + 1]), for a 
minimum cost mapping from T(I : / )  to T' ( I : j )  may not be extendable to a mapping by 
adding (i + l , j  + 1). For example, consider the following trees T1 and T2: 

A A 

T 1 B B C T 2 
I t 
D D 

Assume that the cost of  each change, delete, or insert operation is 1 for all nodes. {(1, 1), 
(2, 2)} is a minimum cost mapping from Ti(I: 2) to T2(l: 3). However, {(1, 1), (2, 2), (3, 4)} 
is not a mapping from Ti(I: 3) to Tz(l: 4) because T][2] is an ancestor of  T113] but Tz[2] 
is not an ancestor of  T214]. 

Define 

MIN__M(i  + l , j  + 1) = min{cost (M)lM is a mapping from 
T(I: i + 1) to T ' ( I : j  + 1) such that (i + l , j  + 1) E M}. 

From the above argument we have the following theorem: 
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THEOREM 3.2. 

D(t + l , j  + 1) = mm(D( t , j  + 1) + r(T[i  + 1] ~ A), 
D(i + l , j )  + r(A ~ T ' [ j  + 1]), 
MIN__M(t  + 1, j  + 1)} 

f o ra l l i ,  j ,  I _ < i < I T  I, I < _ J < I T '  I. 
For the special case that MIN__M(i  + l , j  + 1) = DO, J) + r( T[ i + 1] ~ T ' [ j  + 1]) for 

all i,j,  1 _< i <  ITI, and 1 _<j_< [T'[, D([T[, IT'D can be computed in time O([TI*IT'[) 
(see [13]). 

The computation of MIN__M(i  + 1, j + 1) is not trivial. In the next section we explore 
some properties of mappings and then show that MIN__M(t  + l , j  + 1) can be computed 
in polynomial time. With the assumption that the root of any tree remains unchanged 
during editing, every mapping from T(I: i + 1) to T ' ( I : j  + 1) contains (1, 1) and D(I, 1) 
~ 0 .  

LEMMA 3.3. 
O ( l ,  l )  = O, 

t 

n(i, l) = Z r(T[k]-- )  A), l < t _ < l T I ,  and 
k - 2  

J 

D(I , j )  = Z r ( h - *  T'[k]), 1 < j_<  IT'I. 
k - 2  

4. Computatton of  MIN___M(t + l , j  + 1) 

We first show that a mapping from T(I: i + 1) to T ' ( I : j  + 1) may be decomposed into 
submappings such that each submapping is a mapping from one portion of  T(I: t + 1) to 
one portion of  T'(I: j + 1). Consequently, for a mimmum cost mapping, each of  its 
submappings is also a minimum cost mapping. 

LEMMA 4.1. Assume that T[p] and T'[ q] are ancestors of  T[i + 1] and T;[j  + 1], 
respectively, and that M is a mapping from T(I: i + 1) to T'(I: j + 1) such that (p, q) and 
(i + l , j  + 1) are in M. Let M1 and Mz be the subsets o f  M defined by 

M l = { ( m , n ) l ( m , n ) ~ M ,  l _< m_< p and l _< n_< q} 

and 
Mz = {(m, n)l(m, n) ~ M, p _< m _< i and q _< n .<_ j}.  

Then 
(1) M1 is a mapping from T 0 : p )  to T'(I: q); 

Mz is a mapping from T(p: t) to T'( q: j); 
M = M1 t_J M2 U {(i + l , j  + 1)}; and 
cost(M) = cost(M1) + cost(M2) - r (T[p]  ~ T'[ q]) + r(T[i  + 1] ~ T ' [ j  + 1]). 

(2) cost(M) = mm(cos t (M' ) lM'  ts a mapping from T(I: i + 1) to T ' ( I : j  + 1) 
such that (p, q) and (i + l, j + 1) are m M'}  iff  

cost(M1) = mm(cost(M~)lM~ is a mapping from T( l :p )  to T'(I: q) 
such that (p, q) E M~} and 

cost(M2) = min (cost(M[) I M[  is a mappmgfrom T(p: i) to T'( q: j )  
such that (p, q) E M[ and M~ U {(t + l , j  + 1)} is a mapping}. 

PROOF. Consider the following diagram: 
1 

T( I : t+ I )  

1 

+1 

J 
T' ( l : j + l )  
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(1) For each (m, n) in M, m >_ p if and only If n >_ q. Therefore, M ffi M1 t2 Ms O 
((i + l , j  + 1)) and M1 and M2 have exactly one common line, (p, q). 

(2) Only ifi Assume that 

cost(M1) > min{cost(M~)lM~ is a mapping from 
T(I :p)  to T'(l:  q)with (p, q) in M~) ffi cost(m~'), 

where M~' is a mapping from T(l: p) to T'(I: q) with (p, q) in Mr. Then M" = Mi" O M2 
U ((i + l , j  + 1)) is a mapping from T(I: i + l) to T ' ( I : j  + l) with (p, q) and 
(i + l , j  + 1) in M", and cost(M") < cost(M). Thus 

cost(M) > mm(cost(M')lM' is a mapping from T(I: l + l) to 
T'(I:j  + 1) with (p, q) and (i + l , j  + 1) in M').  

The same conclusion holds if 

cost(M2) > min{cost(M~)] M~ is a mapping from T(p" i) to T'( q: j) 
with (p, q) m M~ and M~ U ((i + l , j  + 1)} is a mapping). 

If." The proof is similar to the "only if"  proof. Q.E.D. 
Assume that M is a mapping from T(I: l + l) to T'(I:j  + 1) with (i + l , j  + 1) in M. Let 

T[SM] and T'[tM] be the latest ancestors of T[l + 1] and T'[j + 1], respectively, touched 
by lines of M. (It has been assumed that every mapping from T(l:  i + 1) to T'(I' j  + 1) 
contains the line (1, 1), and therefore T[SM] and T'[tM] must exist.) Since (l + l , j  + 1) is 
in M, (SM, tm) is in M. The following diagram illustrates the meaning of nodes T[sm] and 

l l 

T(l:i+l) T t (l:J+l) 

In the above diagram, f ( x )  denotes the father of node x. By Lemma 2.1, T[ f ( i  + 1)] 
( T ' [ f ( j  + 1)]) is on the path from T[SM] (T'[tM]) to T[i] (T'[j]) .  Slashes crossing the line 
from SM t o f ( i  + 1) (not including SM) indicate that any descendant of  T[SM] on the path 
from T[SM] to T[ f ( i  + 1)] is not touched by any line of  M. Slashes in T'(I: j + 1) are 
defined similarly. 

LFMMA 4.2. 

MIN__M(i+ l , j +  1)= r (T[ i+ 1 ] ~  T'[ j+  l]) 
+ min~,t {min{cost(gl)[M1 is a mapping from T(I: s) to T'(l:  t) with (s, t) in Mi) 

+ min(cost(M2)lM2 is a mapping from T(s: i) to T'(t: j) such that (s, t) is in 
g and any descendant of T[s] (T'[t]) on the path from T[s] (T'[t]) 
to T[fO + l)] (T ' [ f ( j  + 1)]) is not touched by any line of M2) - 
r(T[s] ~ T'[t])} 

where T[s] and T'[t] are ancestors of T[i + l] and T'[j + l], respectively. 
PROOF. Let R denote the right side of  the above formula and let L denote 

MIN__M(i + 1, j + l), which is min{cost(M)[M is a mapping from T(I: i + 1) to 
T ' ( l : j  + l) with (i + l , j  + l) in M) .  

Assume that M is a mapping from T(I: i + l) to T ' ( l : j  + l) with (i + l , j  + l) in M. 
Then M contains (SM, tM), where T[SM] and T'[tM] are the latest ancestors of  T[i + l] and 
T'[j + 1], respectively, touched by lines of  M. By Lemma 4. l, M can be decomposed into 
submappings M1 and M2 such that M1 is a mapping from T(l: su) to T'(l: tM), M~ is a 

T'[Ud: 
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mapping from T(SM: i) to T'(tM:j), and M = M1 U Mz t.J {(i + l , j  + 1)). It follows that L 
~_R. 

Assume that T[s] and T'[t] are ancestors of  T[i  + 1] and T ' [ j  + 1], respectively. Let 
M1 be a mapping from T(h  s) to T'(I :  t) with (s, t) in Mi and let Mz be a mapping from 
T(s: t) to T'(t. j )  such that (s, t) is in M2 and any descendant of  T[s] (T'[ t])  on the path 
from T[s] (T'[t]) to T [ f ( t  + 1)] ( T ' [ f ( j  + 1)]) is not touched by any line of  M2. 
Then M = M~ t.J M 2 0  {(i + 1, j + 1)} is a mapping from T(I" i + !) to T ' ( j  + 1). 
Therefore L _< R. From L _> R and L _< R, it follows that L = R. Q.E.D. 

Assume that s <_ u _< l, t _< v _< j,  T[u] is on the path from T[s] to T[t], and T'[v] is on 
the path from T'[t] to T'[j] .  Define E[s: u: i, t: v:j]  to be mm{cos t (M) l  M Is a mapping 
from T(s: i) to T'( t : j )  such that (s, t) is in M and no descendant of  T[s] (T'[t])  on the path 
from T[s] (T'[t])  to T[u] (T'[v]) is touched by a line of  M}. Then we have the following 
theorem from Lemma 4.2: 

THEOREM 4.1. 

M I N _ _ M ( i  + l , j  + 1) -- r (T[ i  + 1] ~ T ' [ j  + 1]) 
+ mins.t {MIN__M(s ,  t) + E[s : f ( t  + 1): i, t : f ( j  + l ) : j ]  - r(T[s]  ~ T'[t])} 

where T[s] and T'[t] are ancestors o f  T[i  + 1] and T ' [ j  + 1], respectively. 
Now the remaining problem is how to compute E[s: u: i, t: v: j], where s _< u _< t, t _< v 

<_j, and T[u] (T'[v]) is on the path from T[s] (T'[t]) to T[i] (T ' [ j ] ) .  First, assume that s 
_< u < i and t _< v < j .  Then T[u] (T'[v]) has a son on the path from T[u] (T'[v]) to T[t] 
(T ' [ j ] ) .  Consider the following diagram: 

s t 

T ( s : i )  T' ( t : j )  

where T[x]  (T ' [y] )  is the son of  T[u] (T'[v]) on the path from T[u] (T'[v]) to T[t] (T ' [ j ] ) .  
LEMMA 4.3. Assume that s _< u < i and t _< v < j.  Then 

E[s: u: i, t: v: j]  = min{E[s: x: t, t: v: j], 

E[s: u: t, t: y: j], 

E[s: u: x - 1, t: v: y - 1] + E[x: x: i, y: y: j ] ) .  

PROOF. Let M be a mapping from T(s: i) to T'(t: j )  such that cost(M) = E[s: u: i, 
t: v: j ] ,  (s, t) is in M, and no descendant of  T[s] (T'[/])  on the path from T[s] (T'[t])  to 
T[u] (T'[v]) is touched by a line of  M. Then at least one of  the following three cases must 
hold: 

Case 1: T[x]  is not touched by a line of  M. Then E[s" u: i, t: v: j]  = E[s: x: i, t: v: j]. 
Case 2: T'[y]  is not touched by a line of  M. Then E[s: u: t, t: v: j] = E[s: u: t, t: y: j]. 
Case 3: T[x]  and T'[y]  are touched by hnes (x, q) and (p, y) of  M. Assume that p > x. 

Since T[i] is a descendant of  T[x]  and i _> p > x, by Lemma 2.1 T[p]  is a descendant of  
T[x].  By the definition of  a mapping, y > q and T'[y]  is a descendant of  T'[q]. Thus, 
T'[q] is a descendant of  T'[t] on the path from T'[t] to T'[v]. However, this contradicts the 
assumption that no descendant of  T'[t] on the path from T'[t] to T'[v] is touched by a line 
of  M Also, p < x will cause a similar contradiction. Therefore, p = x and q ffi y. Let M1 
and Me be defined by 

M1 = ((m, n) l(m, n) is in M, m < x and n < y}, 

and 

M2 = {(m, n) l(m, n) is in M, m _> x and n _> y}. 
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Then M~ is a mapping from T(s: x - 1) to T' ( t :  y - 1), M2 is a mapping from T(x:  i) to 
T'  (y: j ) ,  and c o s t ( M )  = cos t (Ma)  + cos t (M2) .  Since c o s t ( M )  = E[s: u: i. t: v: j ] ,  it follows 
that cos t (M~)  = E[s: u: x - 1, t" v" y - 1] and c o s t ( M z )  = E [ x :  x" i, y" y: j ] .  (Since T [ u ]  is 
the father of  T [ x ] ,  by Lemma 2.1 T [ u ]  is on the path from T [ s ]  to T [ x  - 1] and likewise 
for T'[v].) Therefore, 

E[s: u: t, t: v: j ]  = E[s: u: x - 1, t: v y - 1] + E [ x :  x: t, y: y:  j ] .  Q.E.D. 

To compute E[s" u: i, t: v: j] ,  we now consider the cases in which one or both of  T [ x ]  and 
T [ y ]  do not exist, I.e., u = i or v = j .  Let M be a mapping from T(s" i) to T ' ( t : j )  such that 
c o s t ( M )  = E[s: u: t, t: v: j ] ,  (s, t) is in M, and no descendant of  T [ s ]  (T'[t])  on the path 
from T [ s ]  (T'[t])  to T [ u ]  (T'[v]) is touched by a hne of  M. 

Case h u = t and v < j .  There are two subcases to be considered: 

s t 

T(s:i) T' (t:J) 

(a) s = u = t. Then T(s:/) contains exactly one node, T[s], and no descendant of  T'[ t ]  
is touched by a line of  M. By Lemma 2.1, T ' [ f ( j ) ]  is on the path from T'[ t ]  to T ' [ j  - 1]. 
Therefore, 

E[s: u: i, t: v: j ]  = E[s" u" i, t: f ( j ) ' j  - 1] + r (A ~ T'[ j]) .  

(b) s < u = i. By Lemma 2.1, T [ f ( i ) ]  is on the path from T [ s ]  to T[t - 1]. Since no 
descendant of  T [ s ]  on the path from T [ s ]  to T[ f ( / ) ]  is touched by a hne of  M, it follows 
that 

E[s" u: t, t: v" j ]  = E[s" f ( t ) :  t - 1, t: v: j ]  + r ( T [ t ]  ~ A) 

Case 2: u < t and v = j .  This case is similar to case 1. 
(a) t = v = j .  Then 

E[s: u: i, t: v: j ]  = E[s: f ( i ) :  t - 1, t: v . j ]  + r ( T [ i ]  ~ A) 

(b) t < v = j .  Then 

E[s: u: t, t: v: j ]  = E[s: u: t, t: f ( j ) :  j -  1] + r(A--> T'[j]) .  

Case 3. There are four subcases to be considered: 

s t 

T(s: i )  T '  (t:j) 

(a) s = u = t a n d t =  v = j .  Then 

E[s: u: i, t: v: j ]  = r ( T [ i ]  ~ T'[j]) .  

(b) s = u = i a n d t < v = j .  Then 

E[s: u: i, t: v: j ]  = E[s: u: i, t: f ( j ) :  j - 1] + r (A ~ T'[j]) .  

(c) s < u = z a n d t = v = j .  Then 

E[s: u" i, t: v: j ]  = E[s: f ( i ) :  ~ - 1, t: v: j ]  + r(T[ i] - - -~  A) 
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(d) s < u = i a n d  t < v = j .  T h e n  ne i the r  T[i]  nor  T ' [ j ]  is t o u c h e d  by a l ine  o f  M.  

T h e r e f o r e ,  

E[s: u: i, t: v : j ]  = E [ s : f ( 0 :  i - 1, t: v : j ]  + r ( T [ l ]  ~ A),  o r  

E[s: u: t, t : f ( y ) . j  - 1] + r ( A  ~ T ' [ j ] ) ,  o r  

E[s: f(i):  i - 1, t: f ( j ) :  j - 1] + r ( T [ t ]  ~ A)  + r ( A - - ~  T ' [ j ] ) .  

A l t h o u g h  e ight  subcases  are  cons ide r ed  in Cases  1, 2, and  3, on ly  fou r  d i f fe ren t  f o r m u l a s  
are  used.  

5. A n  A l g o r i t h m  f o r  the  T r e e - t o - T r e e  Correct ion  P r o b l e m  

Based  on  the  results  s h o w n  in Sec t ions  3 a n d  4, an  a l g o r i t h m  Is p re sen ted  w h i c h  c o m p u t e s  
the  d i s t ance  f r o m  tree  T to t ree T '  m p o l y n o m i a l  t ime.  Th i s  a l g o r i t h m  consis ts  o f  the  
fo l l owing  three  steps: 

(1) C o m p u t e  E[s: u: l, t: v: j ]  for  al l  s, u, t, t, v , j ,  w h e r e  

I _ < i _ < I T  I, I < _ j _ < I T '  l, 

T[u]  (T ' [v ] )  is on  the  pa th  f r o m  T [ I ]  ( T ' [ I ] )  to T[i]  ( T ' [ j ] ) ,  

T[s]  (T ' [ t ] )  is on  the  p a t h  f r o m  T [ I ]  ( T ' [ I ] )  to T[u]  (T ' [v] ) ;  

(2) C o m p u t e  M I N _ _ M ( t ,  j )  for  all  i, j ,  whe re  1 _< i _< [ T [ a n d  1 <_ j _< [ T ' I ;  
(3) C o m p u t e  DO, j )  for  all  i , j ,  where  1 _< t _< I TI a n d  1 _<j _< I T'I. 
D e f i n e f n ( x )  = f ( f n - l ( x ) )  for  n >_ 1 a n d  x > 1, w h e r e f ( x )  is the  f a the r  o f  n o d e  x,  a n d  

f ° ( x )  = x T h e  fo l l owing  is an  a l g o r i t h m  for  s tep (1): 

for t = 1, 2, , ITI do 
f o r j =  1,2, , I T ' l d o  
for u = t,f(O,f2(t), . , 1 do 
for s = u,f(u),f~(u), , 1 do 
for v = j , f ( j ) , f 2 ( j ) ,  , 1 do 
for t = v,f(v),f2(v), , l do 
i f s  = u = t A t = v = j t h e n  E [ s  u t, t v j ]  = r ( T [ t ] - - ~  T'[j]) 
e l s e i f s = u = l V t < v = j t h e n E [ s  u i, t v j ]  = E[s: u t, t f ( j )  j - l ] + r ( A ~  T'[j])  
else i f s < u = t V t = v = j t h e n E [ s . u  z,t v j ] =  E[s'f(O t -  l , t  v j] + r ( T [ t ] ~  A) 
else E[s u l , t  v . j ] = m m(E[s  x t , t  v.j],E[s u t, t y j],E[s u x -  I , t  v y -  1] + LE[x x t ,y .y . j])  

( T [ x ]  is the  son o f  T[u]  on  the  p a t h  f r o m  T[u]  to T[i] ,  a n d  T ' [ y ]  is the  son o f  T'[v]  on  
the  p a t h  f r o m  T'[v]  to T ' [ j ] . )  

T h e  fo l l owing  is an  a l g o r i t h m  for  s tep (2): 

MIN___M(1, 1) = 0, 
for l = 2, 3, , ITI do 

forj = 2, 3, , [T'I do 
begin 

MIN__M(~, j) ~ INFINITE, 
for s =f(t),f2(t),  , 1 do 

for t = f ( j ) , f z ( j ) ,  , 1 do 
begin 
temp ~ MIN__M(s, t) + E[s f(z) l - I, t f ( j )  j - 1] - r(T[s] --, T'[t]), 
MIN___M(i, j) ~ mm(temp, MIN___M(i, j)) 
enid, 

MIN___M(t, j) ~ MIN_._M(t, j)  + r(T[,] ~ T'D]) 
end, 

Fina l ly ,  an  a l g o r i t h m  for  s tep (3) is g iven  be low:  

D(I, !) ~--- 0, 
D(l, l )~ - -D( t -  1, l)+r(T[t]----~A) for 1=2,3 ,  . , ITI ,  
D 0 , j ) ~ D ( I , j - I ) + r ( A ~ T ' [ J ] )  for j = 2 , 3 ,  , IT 'I ,  
for I = 2, 3, , ITldo 

forj  = 2, 3, , IT'I do 
D(t, f l  ~-- mm(D(z,j - 1) + r(A--~ T'[JI), D(t - l , j)  + r(T[t] ~ A), M1N___M(i,j)); 
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Now the tree-to-tree correctton problem has been completely solved. The following 
theorem shows the time complexity of the proposed algorithm for computing the distance 
from one tree to another. 

THEOREM 5.1 Given two trees T and T', the proposed algorithm computes the distance 
from T to T' in ttme O( V* V' * L 2. L '2), where V and V' are the numbers of  nodes respectively 
of  T and T', and L and L '  are the mammum depths respeenvely of  T and T' 

PROOF. Step (1) computes E[s: u: i, t: v: j] for all s, u, i, t, v, j, where 

l < i < _ V ,  l<_j<_ V', 

T[u] (T'[v]) is on the path from T[ I ]  (T ' [ I ] )  to T[t] (T ' [ j ] ) ,  

T[s] (T'[t]) Is on the path from T[ I ]  (T ' [ I ] )  to T[u] (T'[v]). 

Thus, step (1) takes O(V* V' * L 2 * L '2) time. 
Step (2) computes MIN__M(t,  j) for all i, j, where 1 < s < V and 1 < j < V'. Thus, step 

(2) takes O(V* V' * L * L')  time. 
Step (3) computes D(i, j) for all t, j, where 1 < i < V and 1 < j < V'. Thus, step (3) takes 

O( V * V') ume. 
From steps (1), (2), and (3), the distance D(V, V') from Tto  T'  can be computed m time 

O(V* V' *L2*L'2). Q.E.D. 

6. Concluston 

The notion of  distance between two trees can be applied to measuring the similarity 
between two trees. Since trees have been used for &fferent apphcations, the simdanty 
between trees can have different interpretations. One possible apphcauon is to the problem 
of  syntacUc error recovery and correction for programming languages. In [11] it was 
suggested that for the selection of  an error recovery or correcUon, the similarity between 
a corrected string and its replacement should be based on the two strings as well as their 
associated parse trees. 

The longest common subsequence problem, which ts a spectal case of  the string-to-string 
correction problem, has received much attention [1, 3, 4, 5, 13]. The notion of  longest 
common subsequence between two strings can be extended for trees as well. Tree T" is a 
substructure of tree T if there exists a mapping M from T" to T such that every node of  T" 
is touched by a line of  M and for every (p, q) E M, T[p] = T'[ q] Tree T" is a common 
substructure of  trees T and T'  if T" is a substructure of  both T and T'. Tree T" is a largest 
common substructure of T and T' if there is no common substructure of  T and T' that has 
more nodes than T". With constant cost Wc, Wo, Wz for changmg, deleting, and inserting 
any node, and with Wc = Wi + WD, the tree resulting from T by deleting nodes of  T that 
are changed or deleted during a mimmum cost transformation from T to T' is a largest 
common substructure of  T and T'. 

In [7, 12] the string-to-string correction problem was extended by allowing the operauon 
of  interchanging two adjacent characters. Wagner [12] showed that under certain restric- 
Uons the extended string-to-string correcuon problem can be solved in determimstlc 
polynomial time, but the general problem ~s NP-complete. How to extend the tree-to-tree 
correction problem by allowing the operation of  interchanging two adjacent nodes is 
currently being investigated. 

The tree-to-tree correction problem may also be extendable by modifying the definmons 
of  change, delete, and insert operations. One example Is to add the restriction that the 
delete and insert operations can only be apphed to the leaves of  trees. For this restricted 
problem, one more condmon should be added to the definition of  a mapping M: 

F o r e v e r y ( i , j ) ~ M ,  if i # l # j ,  then ( f ( i ) , f ( j ) ) E M .  

This condition imphes that if T[i] and T'[j] are touched by the same hne, then they have 
the same level number. The algorithm presented in SecUon 5 can be simplified to solve the 
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restricted problem, but the simplification process is not trivial. In [9] Selkow proposed a 
simple algorithm which solves this restricted problem in time O( I TI * I T'I) 
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