Check for
Updates

The Tree-to-Tree Correction Problem

KUO-CHUNG TAI

North Carolina State Unwversity, Raleigh, North Carolina

ABSTRACT  The tree-to-tree correction problem 1s to determine, for two labeled ordered trees 7 and 77, the
distance from T to 7" as measured by the mmimum cost sequence of edit operations needed to transform T into
T’ The edit operations investigated allow changing one node of a tree into another node, deleting one node from
a tree, or sertng a node 1nto a tree An algonithm 15 presented which solves this problem 1n ime O(Fs ¥’ L?»
L’®), where V and ¥V’ are the numbers of nodes respectively of Tand 77, and L and L’ are the maximum depths
respectively of T and T’ Possible applications are to the problems of measuning the similarity between trees,
automatic error recovery and correction for programming languages, and determining the largest common
substructure of two trees

KEY WORDS AND PHRASES  tree correction, tree modification, tree snmllanty

CR CATEGORIES 379,4.12,422,523,525

1. Introduction

The string-to-string correction problem, which is to determine the distance between two
strings as measured by the minimum cost sequence of edit operations needed to transform
one string into the other, was investigated in {7, 8, 10, 12, 13, 14]. In [13] Wagner and
Fischer considered the following three edit operations: changing a character into another
character, deleting a character, and inserting a character; and they presented an algorithm
that computes the distance between two strings in time O(m=*n), where m and n are the
lengths of the two given strings.

The various attempts to achieve high-dimensional generalizations of strings include
trees, graphs, webs, and plex structures. Trees are considered the most important nonlinear
structures arising in computer algorithms [6]. Tree automata, tree grammars, and their
applications for syntactic pattern recognition have been studied (e.g. [2]).

In this paper we define the notion of distance between two labeled ordered trees and
present an algorithm that computes the distance in time O(V* V'« L*+ L'?), where ¥ and
V’ are the numbers of nodes of the two trees and L and L’ are the maximum depths of the
two trees. The set of allowable edit operations includes: (1) changing one node into another
node (changing the label of the node); (2) deleting one node from a tree; and (3) inserting
a node into a tree.

Since each string can be considered a tree of depth two (with a virtual root added), the
string-to-string correction problem 1s just a special case of the tree-to-tree correction
problem with L = L’ = 2. Possible applications of the notion of distance between two trees
are discussed at the end of this paper.

2. Edit Operations on Trees
In this paper all trees we discuss are rooted, ordered, and labeled. Let T be a tree. | T

Permussion to copy without fee all or part of this material 1s granted provided that the copies are not made or
distnbuted for direct commercial advantage, the ACM copynght notice and the title of the publication and 1ts
date appear, and notice 1s given that copying 1s by permission of the Association for Computing Machinery To
copy otherwise, or to republish, requires a fee and/or specific permission

Author’s address Department of Computer Science, North Carolina State University, P O Box 5972, Raleigh,
NC 27607

© 1979 ACM 0004-5411/79/0700-0422 $00 75

Journal of the A on for C g Machmery, Vol 26, No 3, July 1979, pp 422-433

P


http://crossmark.crossref.org/dialog/?doi=10.1145%2F322139.322143&domain=pdf&date_stamp=1979-07-01

The Tree-to-Tree Correction Problem 423

denotes the number of nodes of T. T[i] denotes the node of T whose position in the
preorder for nodes of T is i. The preorder traversal on T is to first visit the root of T and
then traverse the subtrees of T from left to right, each subtree traversed in preorder. The
following diagram illustrates how nodes of a tree T are denoted:

1]
(2] 131 tl6]

t[4] t[5]

LemMMA 2.1.  Assume that T(i] and T{i,] are nodes of T with T[i,] being an ancestor of
T{iy]. Then

(1) i <iy

(2) For any i such that ny < i < iy, T[i] is a descendant of Tli\];

(3) For the father T[i;] of Tliz), Tlss]is T{iz — 11 or an ancestor of Tli; — 1], and T{is]
is on the path from T[i] to T[i, — 1].

Proor. The proof follows from the defimition of preorder traversal. Q.E.D.

Let A denote the null node. An edit operation is written b — ¢, where each of b and ¢
is either a node or A. b — c is a change operation if b % A and ¢ # A, a delete operation
if b A = c, and an insert operation if b = A # c. Let T” be the tree that results from the
application of an edit operation b — c to tree T'; this is written 7 => T’ via b — c. The
relations between T and 7" are described as follows:

(1) If b — cis a change operation, then node b is replaced by node ¢, i.e,,

FANEEEWAN

for some trees T, and 7.
(2) If b — c is a delete operation, then node b is deleted, i.e.,

A

for some trees T, and To.
(3) If b — c is an insert operation, then node c 1s inserted, i.e.,

T = and T' =

ZN
A




424 KUO-CHUNG TAI

for some trees Ty and To.

Each node of a tree except the root 1s associated with a unique edge connecting the node
and its father. For the deletion or insertion of a node, both the node and its associated
edge are included. Without loss of generality it may be assumed that the roots of all trees
have the same umique label and that the root of each tree remains unchanged during
editing. Examples are given below to illustrate the applications of the three edit operations.

R R
I => }'\ via B+ C
j\F E F
R R
A/A\ > A//l\\p via B > A
E F
R R
A/ERF => A/\ via A > C
E F
Let S be a sequence sy, 52,  , S» of edit operations. S transforms tree T to tree T if
there is a sequence of trees Ty, T, , T such that T= Ty, 7" = T)n and T,y => T, via

sforlsism.
Let r be an arbitrary cost function which assigns to each edit operation b — ¢ a
nonnegative real namber r(b — c¢). Extend r to a sequence of edit operations S = s, s,
, 8m by letting r(S) = Y=, r(s). Without loss of generality it may be assumed that
r(b— b) =0 and that r(b— a) + r(a— c¢) = r(b — o).
The distance d(T, T”) from tree T to tree T’ is defined to be the minimum cost of all
sequences of edit operations which transform 7T into 77, i.e.,

d(T, T') = min{r(S)} S is a sequence of edit operations which transforms T mnto 7"}.

The number of different sequences of edit operations which transform T into T is infinute.
Therefore, it is impossible to enumerate all valid sequences and find the minimum cost In
the next section, structures called mappings are defined so that d(7, T") can be computed
in polynomial time.

3 Mappings

Intuitively, a mapping is a description of how a sequence of edit operations transforms T
into T”, ignoring the order in which edit operations are applied.
Consider the following diagram:

T[1] ~-----omeememocnas T'[1]
T[ii/fj§xk ----------- T'[ii//’;T;[;\\\;TIS]
HE |
1[3]  T[4] --mmmemmmneee T3] TTTe-- (6]

A dotted line from T'[1] to T[] indicates that T[] should be changed to T'{ ;] if T[] #
T'[j], or that T[{] remains unchanged, but becomes T'[ /], 1if T[i] = T’[ j]. Nodes of T not
touched by dotted lines are to be deleted and nodes of T” not touched are to be inserted.
Such a diagram 1s called a mapping, which shows a way of transforming T'to 7". Formally,
we define a triple (M, T, T') to be a mapping from T to T’, where M is any set of pairs of
integers (i, j) satisfying:



The Tree-to-Tree Correction Problem 425

) 1=i=<|T}, 1=y=<|T'};
(2) For any two pairs (i}, ji) and (i, j2) in M,
@ h=niff ), = j;
(c) TTVi]1s an ancestor (descendant) of T[z,] iff
T'[ j1] is an ancestor (descendant) of T j,].

Where there is no resulting confusion, we do not distinguish between the triple (M, T, T")
and the set M.

Each pair (i, j) in M 1s interpreted to be a line segment jormng T'[{] and T'[ j]. Condition
(2a) ensures that each node of both T and T” is touched by at most one line. Conditions
(2b) and (2c) ensure that after untouched nodes of both T and 7" are deleted, T and T’
become similar (i.., they have the same structure), and the one-to-one correspondence
between nodes of T and T’ which preserves the structure 1s indicated exactly by the hines
of M. By deleting untouched nodes, the preceding diagram becomes:

Let M be a mapping from T to 7" and let / and J be the sets of untouched nodes of T
and T’ respectively. We define the cost of M:
costM)= Y r(TUll=Th+ X r(Tl]l—- AN+ 3 r(A—> T[)D.
@ peM el ed
Thus, the cost of M is just the cost of the sequence of edit operations which consists of a
change operation T[1] — T'[;] for each line (i, j) of M, a delete operation T{r} — A for
each node T'[i] not touched by a line of M, and an insert operation A — T7[;] for each
node T"[ ;] not touched by a line of M.
In order to show that d(7, T”) can be determined by a minimum cost mapping from T
to 77, the following two lemmas need to be verified:
Lemma 3.1.  Let M, be a mapping from T\ to T, and let M, be a mapping from T to Ts.
Then:
(1) MieM, = {(i, k)|, j)) € M, and (}, k) € M, for some j} 1s a mapping from T to Ts;
(2) cost(M,o M) < cost(My) + cost(My).
PROOF.
(1) Let (i), k) and (ip, k) be two lines of M, M,. Then there exist j; and j; such that
(v J1), (o jo) € My and (), k1), (Jo, k2) € M. By the definition of a mapping:
(a) (11 = i2 lffjl =jg) and (Jl =j2 iff kl = kz),
) (h<ipiffjy<j) and (ji < iff k) <ky);
(¢) (Ti[i,] is an ancestor (descendant) of T\{i] iff
To[ ;1] 1s an ancestor (descendant) of Ty 7;]), and
(T[ ;1] is an ancestor (descendant) of T[ y,] iff
Ty k,] 1s an ancestor (descendant) of T5[k;]).

Therefore, M, ° M, is a mapping from T} to Ts.

(2) The proof that cost(M,° M) =< cost(M,) + cost(M,) follows closely the proof of
Lemma 1 in [13] and is omitted. This proof relies on the assumption that r{(b — ¢) =
r(b—>a)+ra—c) QE.D.

LeEMMA 3.2. For any sequence S of edit operations which transforms T into T’, there
exists a mappmg M from T to T’ such that coskM) < r(S).

ProoF. It can be shown by induction on m that if S = 51, 55, , s is a sequence of
edit operations and Ty, Ty, , T is the sequence of trees from T to T}, via S, then there



426 KUO-CHUNG TAI

exists a mapping M from T to T, such that cost(M) = r(S). This proof is similar to the
proof of Theorem 1 in [13] and is omitted. Q.E.D.

Since d(T, T") = min{cost(S)| S is a sequence of edit operations which transforms T into
T}, we have:

THEOREM 3.1 d(T, T') = min{cost(M)|M is a mapping from T to T'}.

Hence the search for a minimal cost sequence of edit operations has been reduced to a
search for a minimal cost mapping.

Let 7(: i;) denote the portion of T which consists of nodes T[4], T[i; + 1], ...,
T[i;), and their associated edges, where # is an ancestor of #; and similarly define
T'[ )1 jo]. Let DG + 1, + 1) be the distance from tree T(1: i + 1) to tree T°(1: y + 1), i.e,,
DG+ 1,j+ 1)=d(T(L:i + 1), T'(1: j + 1)). Consider the following diagram:

1] 1'[1]

t[i+1] T'[§+1]

r[1] T'[3]
T(l:i+1) T'(1l:3+1)

Suppose M is a minimum cost mapping from T(1: i + 1) to T'(1: j + 1), i.e,, cost(M) =
D(i + 1, j + 1). Then at least one of the following three cases must hold:

Case 1: T[i + 1] is not touched by a line of M. Then cost(M) = D(i, j + 1) +
r(T[i+ 1] > A), corresponding to the cost of transforming T'(1: 1) to T'(1: j + 1) plus the
cost of deleting Tfi + 1].

Case 2: T'[j + 1] is not touched by a line of M. Then cost(M) = D(i + 1, j) +
r(A — T'[j + 1]), corresponding to the cost of transforming T(1: i + 1) to T'(1: ) plus the
cost of inserting T'[j + 1].

Case 3: T[i + 1] and T'[j + 1] are touched by lines (¢ + 1, ¢) and (p, j + 1) of M. By
the definition of a mapping, (i + 1 =piffg=j+ D and (i + 1 > piff ¢ > j + 1). Since
i+lzpandj+1=q, i+ 1=pandj+ 1 =g Thus, T[i+ 1]and T'[j + 1] are both
touched by the same line (i + 1,y + 1). Note that if M = M — {(i + 1, j + 1)} is not a
minimum cost mapping from 7'(1: i) to T'(1: j), then

costM) = costM') + r(T{i+ 1] > T'[j+ 1D >DGEG N+ r(ThH+ 1] T[j+ 1]).

Thus, it may be true that D(i + 1, j + 1) > DG, ) + r(T[i + 1] » T[j + 1)), for a
minimum cost mapping from T(1: i) to T'(1: j) may not be extendable to a mapping by
adding (7 + 1, j + 1). For example, consider the following trees T and T

A A
| YN

T "3 B ‘|: T,
D D

Assume that the cost of each change, delete, or insert operation is 1 for all nodes. {(1, 1),
(2, 2)} is a mmnimum cost mapping from Ti(1: 2) to Tx(1: 3). However, {(1, 1), (2, 2), (3, 4)}
is not a mapping from Ti(1: 3) to T(1: 4) because Ti[2] is an ancestor of Th[3] but T3[2]
is not an ancestor of T>{4].

Define

MIN_M(i + 1, j + 1) = min{cost(M)| M is a mapping from
T(:i+ Dto T'(l: g+ 1) such that G + 1,y + 1) € M).

From the above argument we have the following theorem:



The Tree-to-Tree Correction Problem 427

THEOREM 3.2.

DG+ L j+ 1) =pmn{D@ j+ 1)+ r(T{i + 1] > A),
DiEi+1L,)+r(A—>TTj+ 1)),
MIN_M@ + 1,/ + 1)}
foralli,j, 1=i<|T|, 1 =5<|T).

For the special case that MIN__M(@i+ 1,7+ 1) =D(, ) + r(T[i + 1] > T'[j + 1] for
alli,j, 1 si<|T|,and 1 =j=<|T’|, D(T|, |T’]) can be computed in time O( T |*]T’|)
(see [13]).

The computation of MIN_M(i + 1, j + 1) is not trivial. In the next section we explore
some properties of mappings and then show that MIN__M(: + 1, j + 1) can be computed
in polynomial time. With the assumption that the root of any tree remans unchanged
during editing, every mapping from T'(1: i + 1) to T°(1: j + 1) contains (1, 1) and D(1, 1)

LEMMA 3.3.
D, D

O,

Y r(Tkl—= A), 1 <1< |T|, and

k=2

DG, 1)

D(,)) = é riA— TTkD, 1<j=|T"|.

k=2

4. Computation of MIN_MG@ + 1,7+ 1)

We first show that a mapping from 7'(1: i + 1) to T'(1: y + 1) may be decomposed into
submappings such that each submapping is a mapping from one portion of 7(1:: + 1) to
one portion of T'(1: y + 1). Consequently, for a minimum cost mapping, each of its
submappings is also a minimum cost mapping. X

LEMMA 4.1. Assume that T[p] and T'[ q] are ancestors of T[i + 1] and T'[; + 1],
respectively, and that M is a mapping from T(1: i + 1) to T'(1: j + 1) such that (p, q) and
@@+ 1,j+ 1) arein M. Let M, and M, be the subsets of M defined by

My={mn|mneEM Il<m=pandl<n=< g}

and
My;={(mn)mn€EM, p<m=<iandq=<n=j}.
Then
(1) M, is a mapping from T(1: p) to T'(1: g);
M, is a mapping from T(p: 1) to T'(q: j);
M=M1UM2U {(l+ 1,J+ l)},and
cost(M) = cost(M,) + costMs) — r(T{pl— T'[¢q]) + r(T[i + 1] > T'[j + 1)).
(2) cost(M) = min{cost(M")| M’ 1s a mapping from T(1: i + 1) to T'(1: j + 1)
such that (p, @) and (i + 1, j + 1) are n M'} iff
cost(M,) = nmun{cost(M1)| M1 is a mapping from T(1: p) to T'(1: q)
such that (p, q) € My} and
cost(M3) = min{cost(M3)| M3 is a mapping from T(p: i) to T'(q: j)
such that (p, ) € M3 and M3 U {1 + 1, 7 + 1)} is a mapping}.
Proor. Consider the following diagram:

’

’
¢ T(p:1i)
y

T(l:i+1) T'(1:j+1)



428 KUO-CHUNG TAl

(1) For each (m, n) in M, m = p if and only if n = ¢. Therefore, M = M, U M, U
{(i(-zi-) lbj ;— })}Aand M, la:nd M; have exactly one common line, (p, ¢).
nly if: Assume that

cost(M) > min{cost(M1)| M1 is a mapping from
T(1: p) to T'(1: ¢) with (p, ¢) in M7} = cost(MYT),

where M1 is a mapping from T(1: p) to T'(1: ¢) with (p, ¢) in M7. Then M = M{U M,
U{G+ 17+ 1)} 1s a mapping from T(1: i + 1) to T'(1: j + 1) with (p, q) and
(i+1,j+ 1)in M”, and cost(M") < cost(M). Thus

cost(M) > min{cost(M’)| M’ is a mapping from T(1: 2 + 1) to
T'(t:y+ 1) with (p,g) and (i + 1, 7+ 1) in M'}.

The same conclusion holds if

cost(M3) > min{cost(M3)| M} is a mapping from T(p* i) to T'(q: j)
with (p, ¢) 1in M3 and M5 U {(G + 1,7 + 1)} is a mapping}.

If: The proof is similar to the “only if”” proof. Q.E.D.

Assume that M is a mapping from T(1: 1+ 1) to T'(1: y+ ) with G+ 1, j + 1) in M. Let
T[sum] and T'[1y] be the latest ancestors of T[: + 1] and T'[; + 1], respectively, touched
by lines of M. (It has been assumed that every mapping from T(l: i + 1) to T'(1' y + 1)
contains the line (1, 1), and therefore T[su] and T'[#] must exist.) Since ¢ + 1, j + 1) is
in M, (sm, tar) is in M. The following diagram illustrates the meaning of nodes T'[ss] and
T,[tM]I

1
SM tM
£(1+1) £G3+D
i+1 i+l
i 3
T(1:4+1) T'(1:3+1)

In the above diagram, f(x) denotes the father of node x. By Lemma 2.1, T[ f(i + 1))
(T'[ £(j + 1D is on the path from Tsa] (T"[1ac]) to T{i] (T'[ /]). Slashes crossing the line
from sp to f(i + 1) (not including s») indicate that any descendant of T'[sa] on the path
from T[sm] to T[f(i + 1)] is not touched by any line of M. Slashes in T'(1: j + 1) are
defined similarly.

LemMma 4.2

MIN_M@i+1,j+ )= r(Tli+1]->T[j+1)
+ mins, {min{cost(M,)| M, is a mapping from T(1: 5) to T'(L: t) with (s, t) in M)
+ min{cost(M;)| M, is a mapping from T(s: i) to T'(t: j) such that (s, t) is in
M and any descendant of T{s] (T'[t]) on the path from T[s] (T'[¢])
to T{fG + D] (T[f(; + DD is not touched by any line of M;} —
r(Tls]— T'{:))

where T{s} and T'[t] are ancestors of T{i + 1] and T'[ j + 1], respectively.

Proor. Let R denote the right side of the above formula and let L denote
MIN_M(@ + 1, j + 1), which 15 min{cost(M)|M is a mapping from T(1: i + 1) to
T’(:j+ DwithG+ 1,7+ 1)in M}.

Assume that M 15 a mapping from T(1: i + 1) to T'(L: j + D with ¢ + 1, j + 1) in M.
Then M contains (sa, ta), where T[sa] and T'[15] are the latest ancestors of T[i + 1] and
T'[j + 1], respectively, touched by lines of M. By Lemma 4.1, M can be decomposed into
submappings M; and M; such that M, is a mapping from T(1: spm) to T'(1: ta), Mz is a



The Tree-to-Tree Correction Problem 429

mapping from T{(sy: i) to T'(tar: j), and M = M; U M, U {(i + 1, j + 1)}. It follows that L
=R

Assume that T'[s] and T'[¢] are ancestors of T[i + 1] and T'[; + 1], respectively. Let
M, be a mapping from T(1: 5) to T’(1: 1) with (s, 7) in M, and let M, be a mapping from
T(s: 1) to T'(x. j) such that (s, ¢) is in M; and any descendant of T[s] (T'[¢]) on the path
from T[s] (T[¢]) to T[f¢ + D] (T'[f(j + DD 1s not touched by any line of M.
Then M = M, U M, U {(i + 1, 7 + 1)} is a mapping from T(1* i + 1) to T'(j + 1).
Therefore L < R. From L = R and L < R, it follows that L = R. Q.E.D.

Assume that s < u =<1, 1 <v =<, T[u]is on the path from T[s] to T'[1], and T'{v] is on
the path from T'[¢] to T'{ ). Define E[s: u: i, £: v: j] to be min{cos{(M)| M 1s a mapping
from T(s: i) to T'(«: j) such that (s, #) 1s in M and no descendant of T[s] (T'[¢]) on the path
from T[s] (T'{¢]) to T{u] (T'[v]) is touched by a line of M}. Then we have the following
theorem from Lemma 4.2:

THEOREM 4.1.

MIN_M@G+ L+ 1)=r(Tli+ 11> T[;+ 1))
+ ming, {MIN_M(s, ) + E[s: fG + 1): 4, £ f(j + 1): j] = i(T[s) - T'[4])}

where T[s] and T'(t] are ancestors of T[i + 1] and T'{ j + 1], respectively.

Now the remaining problem is how to compute E[s: u: i, : v: j], where ssu =3, t=v
= j, and T[u] (T'[¥]) 1s on the path from 7'[s] (T'[«]) to T[] (T'[j]). First, assume that s
<u<iandt=<v<j. Then T[u] (T'[v]) has a son on the path from Tu] (T"[v]) to T[i]
(T'[jD. Consider the following diagram:

1 j
T(s:1) T'(t:3)
where T[x] (T'[ y]) is the son of T[u] (T'[v]) on the path from T[«] (T'[v]) to T[] (T'[ /D).
LEMMA 4.3. Assume thats<u <iandt=<v <j. Then

Efs: u i, t: v: j] = min{E[s: x: 1, : v: ],
Elsu 1, by j],

Esiw:x— 1L, zviy— 11+ Efx:x:i, y: y: jI}.

Proor. Let M be a mapping from 7(s: i) to T'(t: j) such that cost(M) = E[s: u: i,
r:v: ], (s, 1) is in M, and no descendant of T[s] (T'[¢]) on the path from T[s] (T"{¢]) to
T{u] (T'[v]) 1s touched by a line of M. Then at least one of the following three cases must
hold:

Case 1: T[x] 1s not touched by a line of M. Then E[s w: i, t: v: j] = E[s: x: i, t: v: j].

Case 2: T’[y]is not touched by a line of M. Then E[s: u: 1, t: v: j] = E[s: w: 1, : y: J].

Case 3: T[x]and T'[ y] are touched by lines (x, ¢) and (p, y) of M. Assume that p > x.
Since T1/] is a descendant of T{x] and i = p > x, by Lemma 2.1 T[p] is a descendant of
T[x]. By the definition of a mapping, y > ¢q and T'[y] is a descendant of T'(g]. Thus,
T’[q]is a descendant of T'{¢] on the path from T’[£] to T'[v]. However, this contradicts the
assumption that no descendant of T'[¢] on the path from T[] to T'[v] is touched by a line

of M Also, p < x will cause a similar contradiction. Therefore, p = x and ¢ = y. Let M,
and M: be defined by

M, = {(m,n)|(m,n)isin M, m < x and n <y},
and

M;={(m,n)|(m,n)1sin M, m=xand n=y).



430 KUO-CHUNG TAI

Then M, is a mapping from T(s: x — 1) to T'(t: y — 1), M:1s a mapping from T(x: i) to
T'(y: j), and cost(M) = cost{M)) + cost(M5). Since cost{M) = E[s: u: i. t: v: j], it follows
that cost(M,) = E[s: u: x — 1, +* v y — 1] and cost(M:) = E[x: x* i, y y: j]. (Since T[u] is
the father of T'[x], by Lemma 2.1 T{u] is on the path from T[s] to T[x — 1] and likewise
for T’[v].) Therefore,

Elswnevjl=Eswx—-1tvy—1]+ Ex:x1y yjl Q.E.D.

To compute E[s u: i, t: v: j}, we now consider the cases in which one or both of T{x] and
T[] do not exist, 1.e., u = i or v = j. Let M be a mapping from T(s i) to T'(z: j) such that
cost(M) = E[s: u: 1, t: v: J], (s, £) is in M, and no descendant of T'[s] (T'{r]) on the path

from T{s] (T'[t]) to T[u] (T'[v]) 1s touched by a line of M.
Case 1: u = 1and v <j. There are two subcases to be considered:

t

i=y
T(s:1) T'(t:3)

(a) s = u =1 Then T(s: i) contans exactly one node, T'[s], and no descendant of T"[¢]
is touched by a line of M. By Lemma 2.1, T'[ f()] is on the path from T'[t]to T[j — 1].
Therefore,

Eswitvyl=Eswitf(yyj—=11+r(A—=T[)D.

(b) s <u =i ByLemma 2.1, T[f(:)] is on the path from T'[s] to T[: — 1]. Since no
descendant of T{s] on the path from T[s] to T[ f(i)] is touched by a hne of M, it follows
that

Elswitvyl=Elsf@:1—=1tv+r(Th]l-> A)

Case 2: u <:and v = This case is similar to case 1.
(@) t=v=j. Then

Esuwitvijl=Elssf@):t—1Ltv.j}+r(TLl—> N)
(b) t<v=j Then
EHswintvjl=Esw,tf(j):j—11+r(A—> T
Case 3. There are four subcases to be considered:
s t

i=u j=v
T(s:1) T'(t:3)

(@) s=u=1and t=v = Then
E[s:u: i, t: v j] = r(T[i] = T'[jD.
(b) s=u=iandt<v=j Then
Eswitvjl=Esuwitf(p.j-11+rA—=TTD.
(¢) s<u=1andt=v=j Then
Elsuwitvjl=Esf@i1—Levjl+r(Tli]— A)



The Tree-to-Tree Correction Problem 431

(d) s <u=randt <v=j Then neither T[/] nor T[] is touched by a line of M.
Therefore,

Eswitvyl=Esf@:i—-1,tvjl+r(Tlt]— A), or
Elssuwntf(p).7—11+r(A—> Ty, or
Els:fG):i—Lef(py—11+r(Tl]—> A+ r(A—> T[]

Although eight subcases are considered in Cases 1, 2, and 3, only four different formulas
are used.

5. An Algorithm for the Tree-to-Tree Correction Problem

Based on the results shown in Sections 3 and 4, an algorithm 1s presented which computes
the distance from tree T to tree T in polynomial time. This algorithm consists of the
following three steps:

(1) Compute E[s: w: 1, t: v: j] for all 5, u, 1, t, v, j, where

l=i<|T|, 1=<;=|T),
T{u] (T'[v]) 1s on the path from T[1](T'[1]) to T{:] (T'[j]),
T[s] (T'[¢]) is on the path from T[1] (7'[1]) to T[u} (T'[¥])

(2) Compute MIN__M(, j) for all i, j, where | =i<|Tjand 1 == |T’{;

(3) Compute D(y, j) for all i, j, where | =1 <|T|and 1 s;=|T’|.

Define f*(x) = f(f""'(x)) for n = 1 and x > 1, where f(x) is the father of node x, and
f%x) = x The following is an algorithm for step (1):

fori=1,2, ,|T{do

fory=1,2, ,|T'|deo

foru = l,f(l),fz(l), ., ldo

for s = u, f(u), f{u), ,1do

forv=1f(NfAp ,ldo

fort=v,f(v),f2(v), , 1 do

fs=u=iNt=v= thenE[s u r,t v j]=r(T{1] > T'[;D
elseifs=u=1vi<v=j thenE[s u ,t v jl=Elsu 1,t f(p) j— 11+ r(A->T[/D
elseifs<u=1Vi=v=j thenEls.u ,t v jJI=E[lsf() 1= 1,1t v )1+ r(TH]1— A)

else E[s u 1, ¢t v.jl=mmn{E[s x ,t v.j , Els u 1,1 p jl, Els u x— L, t v y= 1]+ E[x x 1,y. . J}

(T{x] is the son of T{u] on the path from 7[u] to T[i]l, and T[ y] is the son of T'{v] on
the path from T'[v] to T'[j].)
The following is an algorithm for step (2):

MIN_M(1,1)=0,
fori=2,3, ,|T|do
fory=2,3, ,|T'|do
begin
MIN_MQ,j) « INFINITE,
for s = £ (), f*1), ,1ldo
fort=f(p.f%), ,lde
begin
temp «— MIN__M(s, ty + E{s f() 1= 1,¢ f()) y— 1] = r(T[s]— TT:D,
MIN__M(i, j) < mn(temp, MIN_M(, p))
ead,
MIN_MGQ, ) — MIN__MG, ) + r(T[:] > T[]
end,

Finally, an algorithm for step (3) is given below:

D(1, 1) « 0,
D, 1) DG — 1, )+ r(T{1> A) for 1=2,3, .,|T|,
DL <Dy~ D+r(A> T ) for j=2,3, ,|T|,
fori=2,3, ,|T|do
for;=2,3, ,|T'|deo
D@, j) « mn(D(, j = 1) + r(A— T[], Dt~ L, p) + r(T{i] > A), MIN_M(, p));



432 KUO-CHUNG TAI

Now the tree-to-tree correction problem has been completely solved. The following
theorem shows the time complexity of the proposed algorithm for computing the distance
from one tree to another.

THEOREM 5.1 Given two trees T and T', the proposed algorithm computes the distance

from Tto T intime O(V* V'« L*x L'®), where V and V' are the numbers of nodes respectively
of Tand T', and L and L’ are the maximum depths respectely of T and T’
ProoF. Step (1) computes Els: u: i, #: v: j] for all 5, u, 1, 1, v, J, where

l=<sisV, 1=V,
T{u] (T’[v]) is on the path from T[1] (T'[1]) to T[] (T'{;D),
T{s] (T'{D) 1s on the path from T[1] (T'[1]) to T[u] (T"[v]).

Thus, step (1) takes O(V* V' * L®* L'®) time.

Step (2) computes MIN__M(, ) for all i, j, where | <1< Vand | =j =< V. Thus, step
(2) takes O(V* V' * L= L’) time.

Step (3) computes D(i, /) for all 7, , where | <i=< Vand 1 <j=< V. Thus, step (3) takes
O(V+ V") ume.

From steps (1), (2), and (3), the distance D(V, V') from T to T’ can be computed in time
OV*xV'*L = L), Q.E.D.

6. Conclusion

The notion of distance between two trees can be applied to measuring the sumilarity
between two trees. Since trees have been used for different applications, the similarity
between trees can have different interpretations. One possible application 1s to the problem
of syntactic error recovery and correction for programming languages. In [11] it was
suggested that for the selection of an error recovery or correction, the similarity between
a corrected string and its replacement should be based on the two strings as well as their
assoclated parse trees.

The longest common subsequence problem, which 15 a special case of the string-to-string
correction problem, has received much attention [1, 3, 4, 5, 13]. The notion of longest
common subsequence between two strings can be extended for trees as well. Tree T” is a
substructure of tree T 1f there exists a mapping M from T to T such that every node of T”
is touched by a line of M and for every (p, q) € M, T[p] = T'[¢] Tree T” 13 a common
substructure of trees T and T’ if T” is a substructure of both Tand T". Tree T” is a largest
common substructure of T and T” if there is no common substructure of T and T” that has
more nodes than T”. With constant cost We, Wp, W, for changing, deleting, and inserting
any node, and with W¢ = Wi+ Wp, the tree resulting from T by deleting nodes of T that
are changed or deleted during a minimum cost transformation from T to T’ is a largest
common substructure of T and T".

In {7, 12] the string-to-string correction problem was extended by allowing the operation
of interchanging two adjacent characters. Wagner [12] showed that under certain restric-
tions the extended string-to-string correction problem can be solved in deterministic
polynomial time, but the general problem 1s NP-complete. How to extend the tree-to-tree
correction problem by allowing the operation of interchanging two adjacent nodes i1s
currently being investigated.

The tree-to-tree correction problem may also be extendable by modifying the definitions
of change, delete, and insert operations. One example 1s to add the restriction that the
delete and insert operations can only be applied to the leaves of trees. For this restricted
problem, one more condition should be added to the definition of a mapping M:

Forevery G, ) EM, if i#15#j, then (f(),f())EM.

This condition imples that if T'[{] and T'[] are touched by the same hne, then they have
the same level number. The algorithm presented in Section 5 can be simplified to solve the



The Tree-to-Tree Correction Problem 433

restricted problem, but the simplification process is not trivial. In [9] Selkow proposed a
sumple algorithm which solves thus restricted problem in time O(|T|*|T’})

ACKNOWLEDGMENTS. I would like to thank the referees for their helpful suggestions for
tmproving the readability of this paper. The notion of E[s: w: i, £: v: j} was motivated by a
suggestion given by one referee. Using this notation, the computation of MIN__M(j, ;) has
been substantially simplified.

REFERENCES

1

2

13

14

AHO, AV, HIRSCHBERG, DS, AND UrimMaNn, J D Bounds on the complexity of the longest common
subsequence problem J ACM 23, 1 (Jan 1976), 1-12

Fu, K 8, AND BHARGAVA, B K Tree systems for syntactic pattern recogmtion JEEE Trans Comptrs C-22,
12 (Dec 1973), 1087-1099

HirscHBERG, DS A linear space algonithm for computing maximal common subsequences Comm ACM
18, 6 (June 1975), 341-343

HIRSCHBERG, D' S Algonthms for the longest common subsequence problem J ACM 24, 4 (Oct 1977),
664-675

Hunt, J W, aND SzyManskl, T G A fast algonthm for computing longest common subsequences Comm
ACM 20, 5 (May 1977), 350-353

KnutH, D E  The Art of Computer Programnung, Vol 1 Fundamental Algorithms Addison-Wesley, Reading,
Mass, sec ed, 1973

LOWRANCE, R, AND WAGNER, R A An extenston of the string-to-string correction problem J ACM 22,2
(Apnil 1975), 177-183

SaNkorF, D Matching sequences under deletion/insertion constraints Proc Nat Acad Sct USA 69, 1 (Jan
1974), 4-6

SELKOW, S M The tree-to-tree editing problem Inform Processing Letters 6, 6 (Dec 1977), 184-186
SELLERS, P H An algonthm for the distance between two fimite sequences J Combin Theory, Ser A, 16
(1974), 253-258

Ta1, K C Syatactic error correction 1n programmung languages Ph D Th, Dept Comptr. Sci, Cornell U,
Ithaca, N Y, 1977

WAGNER, R A On the complexity of the extended string-to-stning correction problem Proc Seventh Annual
ACM Symp on Theory of Comptng , Albuquerque, New Mex , 1975, pp 218-223

WAGNER, R A, AND FISCHER, M J The string-to-string correction problem. J ACM 21, 1 (Jan 1974), 168
173

Wong, CK, aND CHANDRA, A K Bounds for the stning editing problem J. ACM 23, 1 Jan 1976), 13-16

RECEIVED MARCH 1977, REVISED JANUARY 1979

Journal of the A for C Mach y, Vol 26, No 3, July 1979

P &




