
The Tree-to-Tree Correction Problem

K U O - C H U N G TAI

North Carolina State Umverslty, Ralezgh, North Carohna

ABSTRACT The tree-to-tree correctmn problem Is to determine, for two labeled ordered trees T and T', the
distance from T to T' as measured by the mlmmum cost sequence of edit operaUons needed to transform T into
T' The edit operations investigated allow changing one node of a tree into another node, deleting one node from
a tree, or inserting a node into a tree An algorithm Is presented which solves this problem m time O(V* V'*LZ*
L'2), where V and V' are the numbers of nodes respectively of T and T', and L and L' are the maximum depths
respectively of T and T' Possible apphcatmns are to the problems of measuring the similarity between trees,
automatic error recovery and correction for programming languages, and determining the largest common
substructure of two trees

KEY WORDS AND PHRASES tree correction, tree modi f ica t ion , tree s imi lar i ty

CR CATEGORIES 3 79, 4A2, 4 22, 5 23, 5 25

1. introduction

The string-to-string correct ion problem, which is to de termine the distance between two
strings as measured by the m i n i m u m cost sequence o f edit operat ions needed to t ransform
one string into the other, was invest igated in [7, 8, 10, 12, 13, 14]. In [13] Wagne r and
Fischer considered the fol lowing three edit operations: changing a character into another
character, delet ing a character, and insert ing a character; and they presented an a lgor i thm
that computes the distance be tween two strings in t ime O(m* n), where m and n are the
lengths o f the two given strings.

The var ious at tempts to achieve h igh-d imens ional general izat ions o f s tnngs include
trees, graphs, webs, and plex structures. Trees are considered the most impor tant nonl inear
structures arising in compute r a lgon thms [6]. Tree automata , tree grammars , and their
apphcat ions for syntactic pat tern recogni t ion have been studied (e.g. [2]).

In this paper we define the not ion o f distance be tween two labeled ordered trees and
present an a lgor i thm that computes the distance in t ime O(V* V'* L2* L'~), where V and
V' are the numbers o f nodes o f the two trees and L and L ' are the m a x i m u m depths o f the
two trees. The set o f a l lowable edit operat ions includes: (1) changing one node into another
node (changing the label o f the node); (2) delet ing one node f rom a tree; and (3) insert ing
a node into a tree.

Since each string can be considered a tree o f depth two (with a vnrtual root added), the
string-to-string correct ion p rob lem is jus t a special case o f the tree-to-tree correct ion
p rob lem with L = L ' = 2. Possible applicat ions o f the not ion o f distance be tween two trees
are discussed at the end o f this paper.

2. Edit Operations on Trees

In this paper all trees we discuss are rooted, ordered, and labeled. Let T be a tree. I Tt

Permission to copy w,thout fee all or part of thts material is granted provided that the copies are not made or
&stnbuted for direct commercial advantage, the ACM copyright noUce and the title of the pubhcatlon and its
date appear, and notice ~s given that copying Is by permission of the AssoclaUon for Computing Machinery To
copy otherwise, or to repubhsh, reqmres a fee and/or specific permission
Author's address Department of Computer Science, North Carohna State Umverstt¥, P O Box 5972, Raleigh,
NC 27607
© 1979 ACM 0004-541 !/79/0700--0422 $00 75

Journal of the Association for Computing Machm©ry, Vo| 26, No 3, July 1979, pp 422-433

http://crossmark.crossref.org/dialog/?doi=10.1145%2F322139.322143&domain=pdf&date_stamp=1979-07-01

The Tree-to-Tree Correction Problem 423

denotes the number of nodes of T. T[i] denotes the node of T whose position in the
preorder for nodes of T is i. The preorder traversal on T is to first visit the root of T and
then traverse the subtrees of T from left to right, each subtree traversed in preorder. The
following diagram illustrates how nodes of a tree T are denoted:

Assume that T[iiI and T[i2] are nodes o f T with r[hl being an ancestor o f LEMMA 2.1.
T[i2]. Then

(1) il </2;
(2) For any i such that h < i _< i2, T[i] is a descendant o f T[il];
(3) For the father T[ia] of T[i2], T[za] is T[t2 - 1] or an ancestor o f T[i2 - 1], and T[i3]

is on the path f rom T[il] to T[i2 - l].
PROOF. The proof follows from the definmon of preorder traversal. Q.E.D.
Let A denote the null node. An edit operation is written b ~ c, where each of b and c

is either a node or A. b ~ c is a change operation if b # A and c # A, a delete operation
if b # A = c, and an insert operation if b = A # c. Let T' be the tree that results from the
application of an edit operation b ~ c to tree T; this is written T = > T' via b ~ c. The
relations between T and T' are descnbed as follows:

(1) I f b ~ c is a change operation, then node b is replaced by node c, i.e.,

T = a n d T t =

for some trees T1 and T2.
(2) I f b --~ c is a delete operation, then node b is deleted, i.e.,

T = a n d T ' -

for some trees T1 and T2.
(3) I f b ~ c is an insert operation, then node c is imerted, i.e.,

T = a n d T '

424 KUO-CHUNG TAI

for some trees T~ and T2.
Each node of a tree except the root is associated with a unique edge connecting the node

and its father. For the deletion or insertion of a node, both the node and its associated
edge are included. Without loss of generahty it may be assumed that the roots of all trees
have the same umque label and that the root of each tree remains unchanged during
editing. Examples are given below to illustrate the appl!caUons of the three edit operations.

R R

I I
~F "> A via B -~ C

E F

R R

/k A
A A => A E F

/ \
E F

via B-* A

R R

A A
A E F "> A ~ via A + C

/ \
E F

Let S be a sequence ;~, ;2, , ;m of edit operations. S transforms tree T to tree T' if
there is a sequence of trees To, T~, , Tm such that T = To, T' = Tm and T,-, => T, via
;, for l <_ i_< m.

Let r be an arbitrary cost function which assigns to each edlt operation b ~ c a
nonnegative real number r(b ~ c). Extend r to a sequence of edit operatlons S = ;i, ;2,

, ;m by letting r(S) = ~_, r(;,). Without loss of generality it may be assumed that
r(b ~ b) = 0 and that r(b ---> a) + r(a ~ c) _> r(b --> c).

The dtstance d(T, T') from tree T to tree T' is defined to be the minimum cost of all
sequences of edit operations which transform T into T', i.e.,

d(T, T') = min{r(S)lS is a sequence of edit operations which transforms T into T'}.

The number of different sequences of edit operations which transform T into T' is infimte.
Therefore, it is impossible to enumerate all valid sequences and find the minimum cost In
the next section, structures called mappings are defined so that d(T, T') can be computed
in polynomial time.

3 Mapping;

Intuitively, a mapping is a description of how a sequence of edit operations transforms T
into T', ignoring the order in which edit operations are applied.

Consider the following diagram:

T [,] - T ' [!]

Z[2~ T" [Z ~ S]
T[3] T[4] T'[3] T [6]

A dotted line from T[z] to T'[j] indicates that T[t] should be changed to T'[j] if T[i] #
T'[j], or that T[i] remains unchanged, but becomes T'[j], If T[i] = T'[j]. Nodes of T not
touched by dotted lines are to be deleted and nodes of T' not touched are to be inserted.
Such a diagram is called a mapping, which shows a way of transforming T to T'. Formally,
we define a triple (M, T, T') to be a mappmg from T to T', where M is any set of pairs of
integers (h J) satisfying:

The Tree-to-Tree Correction Problem 425

(1) 1 _< i ~< I TI, 1 ~ j _< I T'[;
(2) For any two pairs (il, j l) and (/2, j2) in M,

(a) ix = t2 iffJl = j2;
(b) il < /2 iffj l < J2;
(c) T[ix] is an ancestor (descendant) of T[12] lff

T ' [j l] is an ancestor (descendant) of T'[j2].

Where there is no resulting confusion, we do not distinguish between the triple (M, T, T')
and the set M.

Each pair (i,j) in M IS interpreted to be a line segment joining T[i] and T'[j]. Condition
(2a) ensures that each node of both T and T' is touched by at most one line. Conditions
(2b) and (2c) ensure that after untouched nodes of both T and T' are deleted, T and T'
become s~milar (i.e., they have the same structure), and the one-to-one correspondence
between nodes of T and T' which preserves the structure is indicated exactly by the hnes
of M. By deleting untouched nodes, the preceding diagram becomes:

Til l - - - T ' D]

T [2 ~ T" [2 ~
r[5] . T [6] 1

T[4] T' [3]

Let M he a mapping from T to T' and let ! and J be the sets of untouched nodes of T
and T' respectively. We define the cost of M:

cost(M) = ~ r(T[t]--~ T ' [j]) + ~ r (r [t] ~ A) + ~ r (A ~ T'[j]).
O,3)~M t~l J~J

Thus, the cost of M is just the cost of the sequence of edit operations which consists of a
change operation T[t] --~ T'[j] for each line (i, j) of M, a delete operation T[t] ~ A for
each node T[i] not touched by a line of M, and an insert operation A ~ T'[j] for each
node T'[j] not touched by a hne of M.

In order to show that d(T, T') can be determined by a minimum cost mapping from T
to T', the following two lemmas need to be verified:

LEMMA 3.1. Let M1 be a mapping from T1 to T2 and let M2 be a mapping from T2 to T3.
Then:

(1) M1 o M2 = {(i, k)[(i, j) ~ Mi and (j, k) E M2 for some j} ts a mapping from T1 to T3;
(2) cost(M1 o M2) --< cost(M1) + cost(M2).
PROOF.
(1) Let (il, k~) and (/2, k2) be two lines of Mi o M2. Then there exist Jl and./2 such that

(il, Jl), (i2, j2) E M1 and (J1, kl), (j2, k2) E M2. By the defimtion of a mapping:
(a) (tl = /2 iff j t = J2) and (j~ ffi j2 iff k~ = k2);
(b) (ix < i2 iffjx < d2) and (j~ < j2 iff k~ < k2);
(c) (Tl[il] is an ancestor (descendant) of T1[i2] iff

T2[Ji] is an ancestor (descendant) of T2[j2]), and
(T2[J1] is an ancestor (descendant) of Tz[J2] iff
T3[kl] is an ancestor (descendant) of Tz[k2]).

Therefore, M~ o M2 is a mapping from T1 to T3.
(2) The proof that cost(M1 o M2) -< cost(M~) + cost(M2) follows closely the proof of

Lemma 1 in [13] and is omitted. This proof relies on the assumption that r(b ~ c) -<
r (b ~ a) + r (a ~ c). Q.E.D.

LEMMA 3.2. For any sequence S of edtt operations which transforms T into T', there
exists a mapping M from T to T' such that cost(M) <_ r(S).

PROOF. It can be shown by induction on m that if S = sl, s2, , Sm is a sequence of
edit operations and To, T~, , Tm is the sequence of trees from To to Tm via S, then there

426 KUO-CHUNG TAI

exists a mapping M from To to Tm such that cost(M) _< r(S). This proof is similar to the
proof of Theorem 1 in [13] and is omitted. Q.E.D.

Since d(T, T') = min{cost(S) lS is a sequence of edit operations which transforms T into
T'}, we have:

THEOREM 3.1 d(T, T') = min{cost (M)lM is a raappingfrom T to T'}.
Hence the search for a minimal cost sequence of edit operations has been reduced to a

search for a minimal cost mapping.
Let T(il: /2) denote the portion of T which consists of nodes T[i~], T[il + 1]

T[i2], and their associated edges, where il is an ancestor of /2; and similarly define
T'[j~:j2]. Let D(i + l , j + 1) be the distance from tree T(I: i + 1) to tree T ' (I : j + 1), i.e.,
D(i + l , j + I) = d(T(l: i + 1), T ' (I : j + 1)). Consider the following diagram:

T[.i]

T (I : t ÷ I)

T'[I]

t' \T' [j]
T' (l : j + i)

Suppose M is a minimum cost mapping from T(I: i + 1) to T ' (l : j + 1), i.e., cost(M) =
D(i + l , j + 1). Then at least one of the following three cases must hold:

Case 1: T[i + 1] is not touched by a line of M. Then cost(M) = D (i , j + 1) +
r (T[i + 1] ~ A), corresponding to the cost of transforming T(I: t) to T ' (I : j + 1) plus the
cost of deleting T[i + 1].

Case 2: T ' [j + 1] is not touched by a line of M. Then cost(M) = D(i + l, j) +
r (A ~ T ' [j + 1]), corresponding to the cost of transforming T(I: i + 1) to T ' (I : j) plus the
cost of inserting T ' [j + 1].

Case 3: T[i + 1] and T ' [j + 1] are touched by lines (i + 1, q) and (p , j + l) of M. By
the definition of a mapping, (i + 1 = p i f fq = j + l) and (i + l > p i f fq > j + 1). Since
i + 1 _>p and j + 1 _>q, i + 1 - - p and j + 1 = q. Thus, T [i + l] a n d T ' [j + 1] are both
touched by the same line (i + 1, j + 1). Note that if M ' = M - {(i + l, j + l)) is not a
minimum cost mapping from T(l : /) to T'(I: j), then

cost(m) = cost(m') + r(T[i + l] --, T ' [j + 1]) > D(i,j) + r(T[s + 1] ~ T ' [j + l]).

Thus, it may be true that D(i + 1, j + 1) > D(i, j) + r(T[i + 1] ~ T ' [j + 1]), for a
minimum cost mapping from T(I : /) to T' (I : j) may not be extendable to a mapping by
adding (i + l , j + 1). For example, consider the following trees T1 and T2:

A A

T 1 B B C T 2
I t
D D

Assume that the cost of each change, delete, or insert operation is 1 for all nodes. {(1, 1),
(2, 2)} is a minimum cost mapping from Ti(I: 2) to T2(l: 3). However, {(1, 1), (2, 2), (3, 4)}
is not a mapping from Ti(I: 3) to Tz(l: 4) because T][2] is an ancestor of T113] but Tz[2]
is not an ancestor of T214].

Define

MIN__M(i + l , j + 1) = min{cost (M)lM is a mapping from
T(I: i + 1) to T ' (I : j + 1) such that (i + l , j + 1) E M}.

From the above argument we have the following theorem:

The Tree-to-Tree Correction Problem 427

THEOREM 3.2.

D(t + l , j + 1) = mm(D(t , j + 1) + r(T[i + 1] ~ A),
D(i + l , j) + r(A ~ T ' [j + 1]),
MIN__M(t + 1, j + 1)}

f o ra l l i , j , I _ < i < I T I, I < _ J < I T ' I.
For the special case that MIN__M(i + l , j + 1) = DO, J) + r(T[i + 1] ~ T ' [j + 1]) for

all i,j, 1 _< i < ITI, and 1 _<j_< [T'[, D([T[, IT'D can be computed in time O([TI*IT'[)
(see [13]).

The computation of MIN__M(i + 1, j + 1) is not trivial. In the next section we explore
some properties of mappings and then show that MIN__M(t + l , j + 1) can be computed
in polynomial time. With the assumption that the root of any tree remains unchanged
during editing, every mapping from T(I: i + 1) to T ' (I : j + 1) contains (1, 1) and D(I, 1)
~ 0 .

LEMMA 3.3.
O (l , l) = O,

t

n(i, l) = Z r(T[k]--) A), l < t _ < l T I , and
k - 2

J

D(I , j) = Z r (h - * T'[k]), 1 < j_< IT'I.
k - 2

4. Computatton of MIN___M(t + l , j + 1)

We first show that a mapping from T(I: i + 1) to T ' (I : j + 1) may be decomposed into
submappings such that each submapping is a mapping from one portion of T(I: t + 1) to
one portion of T'(I: j + 1). Consequently, for a mimmum cost mapping, each of its
submappings is also a minimum cost mapping.

LEMMA 4.1. Assume that T[p] and T'[q] are ancestors of T[i + 1] and T;[j + 1],
respectively, and that M is a mapping from T(I: i + 1) to T'(I: j + 1) such that (p, q) and
(i + l , j + 1) are in M. Let M1 and Mz be the subsets o f M defined by

M l = { (m , n) l (m , n) ~ M , l _< m_< p and l _< n_< q}

and
Mz = {(m, n)l(m, n) ~ M, p _< m _< i and q _< n .<_ j}.

Then
(1) M1 is a mapping from T 0 : p) to T'(I: q);

Mz is a mapping from T(p: t) to T'(q: j);
M = M1 t_J M2 U {(i + l , j + 1)}; and
cost(M) = cost(M1) + cost(M2) - r (T[p] ~ T'[q]) + r(T[i + 1] ~ T ' [j + 1]).

(2) cost(M) = mm(cos t (M') lM' ts a mapping from T(I: i + 1) to T ' (I : j + 1)
such that (p, q) and (i + l, j + 1) are m M'} iff

cost(M1) = mm(cost(M~)lM~ is a mapping from T(l :p) to T'(I: q)
such that (p, q) E M~} and

cost(M2) = min (cost(M[) I M[is a mappmgfrom T(p: i) to T'(q: j)
such that (p, q) E M[and M~ U {(t + l , j + 1)} is a mapping}.

PROOF. Consider the following diagram:
1

T(I : t+ I)

1

+1

J
T' (l : j + l)

428 KUO-CHUNG TAI

(1) For each (m, n) in M, m >_ p if and only If n >_ q. Therefore, M ffi M1 t2 Ms O
((i + l , j + 1)) and M1 and M2 have exactly one common line, (p, q).

(2) Only ifi Assume that

cost(M1) > min{cost(M~)lM~ is a mapping from
T(I :p) to T'(l: q)with (p, q) in M~) ffi cost(m~'),

where M~' is a mapping from T(l: p) to T'(I: q) with (p, q) in Mr. Then M" = Mi" O M2
U ((i + l , j + 1)) is a mapping from T(I: i + l) to T ' (I : j + l) with (p, q) and
(i + l , j + 1) in M", and cost(M") < cost(M). Thus

cost(M) > mm(cost(M')lM' is a mapping from T(I: l + l) to
T'(I:j + 1) with (p, q) and (i + l , j + 1) in M').

The same conclusion holds if

cost(M2) > min{cost(M~)] M~ is a mapping from T(p" i) to T'(q: j)
with (p, q) m M~ and M~ U ((i + l , j + 1)} is a mapping).

If." The proof is similar to the "only if" proof. Q.E.D.
Assume that M is a mapping from T(I: l + l) to T'(I:j + 1) with (i + l , j + 1) in M. Let

T[SM] and T'[tM] be the latest ancestors of T[l + 1] and T'[j + 1], respectively, touched
by lines of M. (It has been assumed that every mapping from T(l: i + 1) to T'(I' j + 1)
contains the line (1, 1), and therefore T[SM] and T'[tM] must exist.) Since (l + l , j + 1) is
in M, (SM, tm) is in M. The following diagram illustrates the meaning of nodes T[sm] and

l l

T(l:i+l) T t (l:J+l)

In the above diagram, f (x) denotes the father of node x. By Lemma 2.1, T[f (i + 1)]
(T ' [f (j + 1)]) is on the path from T[SM] (T'[tM]) to T[i] (T'[j]) . Slashes crossing the line
from SM t o f (i + 1) (not including SM) indicate that any descendant of T[SM] on the path
from T[SM] to T[f (i + 1)] is not touched by any line of M. Slashes in T'(I: j + 1) are
defined similarly.

LFMMA 4.2.

MIN__M(i+ l , j + 1)= r (T[i+ 1] ~ T'[j+ l])
+ min~,t {min{cost(gl)[M1 is a mapping from T(I: s) to T'(l: t) with (s, t) in Mi)

+ min(cost(M2)lM2 is a mapping from T(s: i) to T'(t: j) such that (s, t) is in
g and any descendant of T[s] (T'[t]) on the path from T[s] (T'[t])
to T[fO + l)] (T ' [f (j + 1)]) is not touched by any line of M2) -
r(T[s] ~ T'[t])}

where T[s] and T'[t] are ancestors of T[i + l] and T'[j + l], respectively.
PROOF. Let R denote the right side of the above formula and let L denote

MIN__M(i + 1, j + l), which is min{cost(M)[M is a mapping from T(I: i + 1) to
T ' (l : j + l) with (i + l , j + l) in M) .

Assume that M is a mapping from T(I: i + l) to T ' (l : j + l) with (i + l , j + l) in M.
Then M contains (SM, tM), where T[SM] and T'[tM] are the latest ancestors of T[i + l] and
T'[j + 1], respectively, touched by lines of M. By Lemma 4. l, M can be decomposed into
submappings M1 and M2 such that M1 is a mapping from T(l: su) to T'(l: tM), M~ is a

T'[Ud:

The Tree-to-Tree Correction Problem 429

mapping from T(SM: i) to T'(tM:j), and M = M1 U Mz t.J {(i + l , j + 1)). It follows that L
~_R.

Assume that T[s] and T'[t] are ancestors of T[i + 1] and T ' [j + 1], respectively. Let
M1 be a mapping from T(h s) to T'(I : t) with (s, t) in Mi and let Mz be a mapping from
T(s: t) to T'(t. j) such that (s, t) is in M2 and any descendant of T[s] (T'[t]) on the path
from T[s] (T'[t]) to T [f (t + 1)] (T ' [f (j + 1)]) is not touched by any line of M2.
Then M = M~ t.J M 2 0 {(i + 1, j + 1)} is a mapping from T(I" i + !) to T ' (j + 1).
Therefore L _< R. From L _> R and L _< R, it follows that L = R. Q.E.D.

Assume that s <_ u _< l, t _< v _< j, T[u] is on the path from T[s] to T[t], and T'[v] is on
the path from T'[t] to T'[j] . Define E[s: u: i, t: v:j] to be mm{cos t (M) l M Is a mapping
from T(s: i) to T'(t : j) such that (s, t) is in M and no descendant of T[s] (T'[t]) on the path
from T[s] (T'[t]) to T[u] (T'[v]) is touched by a line of M}. Then we have the following
theorem from Lemma 4.2:

THEOREM 4.1.

M I N _ _ M (i + l , j + 1) -- r (T[i + 1] ~ T ' [j + 1])
+ mins.t {MIN__M(s , t) + E[s : f (t + 1): i, t : f (j + l) : j] - r(T[s] ~ T'[t])}

where T[s] and T'[t] are ancestors o f T[i + 1] and T ' [j + 1], respectively.
Now the remaining problem is how to compute E[s: u: i, t: v: j], where s _< u _< t, t _< v

<_j, and T[u] (T'[v]) is on the path from T[s] (T'[t]) to T[i] (T ' [j]) . First, assume that s
_< u < i and t _< v < j . Then T[u] (T'[v]) has a son on the path from T[u] (T'[v]) to T[t]
(T ' [j]) . Consider the following diagram:

s t

T (s : i) T' (t : j)

where T[x] (T ' [y]) is the son of T[u] (T'[v]) on the path from T[u] (T'[v]) to T[t] (T ' [j]) .
LEMMA 4.3. Assume that s _< u < i and t _< v < j. Then

E[s: u: i, t: v: j] = min{E[s: x: t, t: v: j],

E[s: u: t, t: y: j],

E[s: u: x - 1, t: v: y - 1] + E[x: x: i, y: y: j]) .

PROOF. Let M be a mapping from T(s: i) to T'(t: j) such that cost(M) = E[s: u: i,
t: v: j] , (s, t) is in M, and no descendant of T[s] (T'[/]) on the path from T[s] (T'[t]) to
T[u] (T'[v]) is touched by a line of M. Then at least one of the following three cases must
hold:

Case 1: T[x] is not touched by a line of M. Then E[s" u: i, t: v: j] = E[s: x: i, t: v: j].
Case 2: T'[y] is not touched by a line of M. Then E[s: u: t, t: v: j] = E[s: u: t, t: y: j].
Case 3: T[x] and T'[y] are touched by hnes (x, q) and (p, y) of M. Assume that p > x.

Since T[i] is a descendant of T[x] and i _> p > x, by Lemma 2.1 T[p] is a descendant of
T[x]. By the definition of a mapping, y > q and T'[y] is a descendant of T'[q]. Thus,
T'[q] is a descendant of T'[t] on the path from T'[t] to T'[v]. However, this contradicts the
assumption that no descendant of T'[t] on the path from T'[t] to T'[v] is touched by a line
of M Also, p < x will cause a similar contradiction. Therefore, p = x and q ffi y. Let M1
and Me be defined by

M1 = ((m, n) l(m, n) is in M, m < x and n < y},

and

M2 = {(m, n) l(m, n) is in M, m _> x and n _> y}.

430 K U O - C H U N G TAI

Then M~ is a mapping from T(s: x - 1) to T' (t : y - 1), M2 is a mapping from T(x: i) to
T' (y: j) , and c o s t (M) = cos t (Ma) + cos t (M2) . Since c o s t (M) = E[s: u: i. t: v: j] , it follows
that cos t (M~) = E[s: u: x - 1, t" v" y - 1] and c o s t (M z) = E [x : x" i, y" y: j] . (Since T [u] is
the father of T [x] , by Lemma 2.1 T [u] is on the path from T [s] to T [x - 1] and likewise
for T'[v].) Therefore,

E[s: u: t, t: v: j] = E[s: u: x - 1, t: v y - 1] + E [x : x: t, y: y: j] . Q.E.D.

To compute E[s" u: i, t: v: j] , we now consider the cases in which one or both of T [x] and
T [y] do not exist, I.e., u = i or v = j . Let M be a mapping from T(s" i) to T ' (t : j) such that
c o s t (M) = E[s: u: t, t: v: j] , (s, t) is in M, and no descendant of T [s] (T'[t]) on the path
from T [s] (T'[t]) to T [u] (T'[v]) is touched by a hne of M.

Case h u = t and v < j . There are two subcases to be considered:

s t

T(s:i) T' (t:J)

(a) s = u = t. Then T(s:/) contains exactly one node, T[s], and no descendant of T'[t]
is touched by a line of M. By Lemma 2.1, T ' [f (j)] is on the path from T'[t] to T ' [j - 1].
Therefore,

E[s: u: i, t: v: j] = E[s" u" i, t: f (j) ' j - 1] + r (A ~ T'[j]) .

(b) s < u = i. By Lemma 2.1, T [f (i)] is on the path from T [s] to T[t - 1]. Since no
descendant of T [s] on the path from T [s] to T[f (/)] is touched by a hne of M, it follows
that

E[s" u: t, t: v" j] = E[s" f (t) : t - 1, t: v: j] + r (T [t] ~ A)

Case 2: u < t and v = j . This case is similar to case 1.
(a) t = v = j . Then

E[s: u: i, t: v: j] = E[s: f (i) : t - 1, t: v . j] + r (T [i] ~ A)

(b) t < v = j . Then

E[s: u: t, t: v: j] = E[s: u: t, t: f (j) : j - 1] + r(A--> T'[j]) .

Case 3. There are four subcases to be considered:

s t

T(s: i) T ' (t:j)

(a) s = u = t a n d t = v = j . Then

E[s: u: i, t: v: j] = r (T [i] ~ T'[j]) .

(b) s = u = i a n d t < v = j . Then

E[s: u: i, t: v: j] = E[s: u: i, t: f (j) : j - 1] + r (A ~ T'[j]) .

(c) s < u = z a n d t = v = j . Then

E[s: u" i, t: v: j] = E[s: f (i) : ~ - 1, t: v: j] + r(T[i] - - -~ A)

The T r e e - t o - T r e e Correc t ion P r o b l e m 431

(d) s < u = i a n d t < v = j . T h e n ne i the r T[i] nor T ' [j] is t o u c h e d by a l ine o f M.

T h e r e f o r e ,

E[s: u: i, t: v : j] = E [s : f (0 : i - 1, t: v : j] + r (T [l] ~ A), o r

E[s: u: t, t : f (y) . j - 1] + r (A ~ T ' [j]) , o r

E[s: f(i): i - 1, t: f (j) : j - 1] + r (T [t] ~ A) + r (A - - ~ T ' [j]) .

A l t h o u g h e ight subcases are cons ide r ed in Cases 1, 2, and 3, on ly fou r d i f fe ren t f o r m u l a s
are used.

5. A n A l g o r i t h m f o r the T r e e - t o - T r e e Correct ion P r o b l e m

Based on the results s h o w n in Sec t ions 3 a n d 4, an a l g o r i t h m Is p re sen ted w h i c h c o m p u t e s
the d i s t ance f r o m tree T to t ree T ' m p o l y n o m i a l t ime. Th i s a l g o r i t h m consis ts o f the
fo l l owing three steps:

(1) C o m p u t e E[s: u: l, t: v: j] for al l s, u, t, t, v , j , w h e r e

I _ < i _ < I T I, I < _ j _ < I T ' l,

T[u] (T ' [v]) is on the pa th f r o m T [I] (T ' [I]) to T[i] (T ' [j]) ,

T[s] (T ' [t]) is on the p a t h f r o m T [I] (T ' [I]) to T[u] (T ' [v]) ;

(2) C o m p u t e M I N _ _ M (t , j) for all i, j , whe re 1 _< i _< [T [a n d 1 <_ j _< [T ' I ;
(3) C o m p u t e DO, j) for all i , j , where 1 _< t _< I TI a n d 1 _<j _< I T'I.
D e f i n e f n (x) = f (f n - l (x)) for n >_ 1 a n d x > 1, w h e r e f (x) is the f a the r o f n o d e x, a n d

f ° (x) = x T h e fo l l owing is an a l g o r i t h m for s tep (1):

for t = 1, 2, , ITI do
f o r j = 1,2, , I T ' l d o
for u = t,f(O,f2(t), . , 1 do
for s = u,f(u),f~(u), , 1 do
for v = j , f (j) , f 2 (j) , , 1 do
for t = v,f(v),f2(v), , l do
i f s = u = t A t = v = j t h e n E [s u t, t v j] = r (T [t] - - ~ T'[j])
e l s e i f s = u = l V t < v = j t h e n E [s u i, t v j] = E[s: u t, t f (j) j - l] + r (A ~ T'[j])
else i f s < u = t V t = v = j t h e n E [s . u z,t v j] = E[s'f(O t - l , t v j] + r (T [t] ~ A)
else E[s u l , t v . j] = m m(E[s x t , t v.j],E[s u t, t y j],E[s u x - I , t v y - 1] + LE[x x t ,y .y . j])

(T [x] is the son o f T[u] on the p a t h f r o m T[u] to T[i] , a n d T ' [y] is the son o f T'[v] on
the p a t h f r o m T'[v] to T ' [j] .)

T h e fo l l owing is an a l g o r i t h m for s tep (2):

MIN___M(1, 1) = 0,
for l = 2, 3, , ITI do

forj = 2, 3, , [T'I do
begin

MIN__M(~, j) ~ INFINITE,
for s =f(t),f2(t), , 1 do

for t = f (j) , f z (j) , , 1 do
begin
temp ~ MIN__M(s, t) + E[s f(z) l - I, t f (j) j - 1] - r(T[s] --, T'[t]),
MIN___M(i, j) ~ mm(temp, MIN___M(i, j))
enid,

MIN___M(t, j) ~ MIN_._M(t, j) + r(T[,] ~ T'D])
end,

Fina l ly , an a l g o r i t h m for s tep (3) is g iven be low:

D(I, !) ~--- 0,
D(l, l)~ - -D(t - 1, l)+r(T[t]----~A) for 1=2,3 , . , ITI ,
D 0 , j) ~ D (I , j - I) + r (A ~ T ' [J]) for j = 2 , 3 , , IT 'I ,
for I = 2, 3, , ITldo

forj = 2, 3, , IT'I do
D(t, f l ~-- mm(D(z,j - 1) + r(A--~ T'[JI), D(t - l , j) + r(T[t] ~ A), M1N___M(i,j));

432 KUO-CHLING TA1

Now the tree-to-tree correctton problem has been completely solved. The following
theorem shows the time complexity of the proposed algorithm for computing the distance
from one tree to another.

THEOREM 5.1 Given two trees T and T', the proposed algorithm computes the distance
from T to T' in ttme O(V* V' * L 2. L '2), where V and V' are the numbers of nodes respectively
of T and T', and L and L ' are the mammum depths respeenvely of T and T'

PROOF. Step (1) computes E[s: u: i, t: v: j] for all s, u, i, t, v, j, where

l < i < _ V , l<_j<_ V',

T[u] (T'[v]) is on the path from T[I] (T ' [I]) to T[t] (T ' [j]) ,

T[s] (T'[t]) Is on the path from T[I] (T ' [I]) to T[u] (T'[v]).

Thus, step (1) takes O(V* V' * L 2 * L '2) time.
Step (2) computes MIN__M(t, j) for all i, j, where 1 < s < V and 1 < j < V'. Thus, step

(2) takes O(V* V' * L * L') time.
Step (3) computes D(i, j) for all t, j, where 1 < i < V and 1 < j < V'. Thus, step (3) takes

O(V * V') ume.
From steps (1), (2), and (3), the distance D(V, V') from Tto T' can be computed m time

O(V* V' *L2*L'2). Q.E.D.

6. Concluston

The notion of distance between two trees can be applied to measuring the similarity
between two trees. Since trees have been used for &fferent apphcations, the simdanty
between trees can have different interpretations. One possible apphcauon is to the problem
of syntacUc error recovery and correction for programming languages. In [11] it was
suggested that for the selection of an error recovery or correcUon, the similarity between
a corrected string and its replacement should be based on the two strings as well as their
associated parse trees.

The longest common subsequence problem, which ts a spectal case of the string-to-string
correction problem, has received much attention [1, 3, 4, 5, 13]. The notion of longest
common subsequence between two strings can be extended for trees as well. Tree T" is a
substructure of tree T if there exists a mapping M from T" to T such that every node of T"
is touched by a line of M and for every (p, q) E M, T[p] = T'[q] Tree T" is a common
substructure of trees T and T' if T" is a substructure of both T and T'. Tree T" is a largest
common substructure of T and T' if there is no common substructure of T and T' that has
more nodes than T". With constant cost Wc, Wo, Wz for changmg, deleting, and inserting
any node, and with Wc = Wi + WD, the tree resulting from T by deleting nodes of T that
are changed or deleted during a mimmum cost transformation from T to T' is a largest
common substructure of T and T'.

In [7, 12] the string-to-string correction problem was extended by allowing the operauon
of interchanging two adjacent characters. Wagner [12] showed that under certain restric-
Uons the extended string-to-string correcuon problem can be solved in determimstlc
polynomial time, but the general problem ~s NP-complete. How to extend the tree-to-tree
correction problem by allowing the operation of interchanging two adjacent nodes is
currently being investigated.

The tree-to-tree correction problem may also be extendable by modifying the definmons
of change, delete, and insert operations. One example Is to add the restriction that the
delete and insert operations can only be apphed to the leaves of trees. For this restricted
problem, one more condmon should be added to the definition of a mapping M:

F o r e v e r y (i , j) ~ M , if i # l # j , then (f (i) , f (j)) E M .

This condition imphes that if T[i] and T'[j] are touched by the same hne, then they have
the same level number. The algorithm presented in SecUon 5 can be simplified to solve the

The Tree-to-Tree Correction Problem 433

restricted problem, but the simplification process is not trivial. In [9] Selkow proposed a
simple algorithm which solves this restricted problem in time O(I TI * I T'I)

ACKNOWLEDGMENTS. I would like to thank the referees for their helpful suggestions for
improving the readabdity of this paper. The nouon of E[s: u: i, t: v: j] was motivated by a
suggestion gwen by one referee. Using this notation, the computation of MIN__M(i, j) has
been substantially simplified.

REFERENCES

I AHO, A V, HIRSCHBERG, D S, AND ULLMAN, J D Bounds on the complexity of the longest common
subsequence problem J ACM 23, 1 (Jan 1976), 1-12

2 Fu, K S, AND BHARGAVA, B K Tree systems for syntactic pattern recognition IEEE Trans Comptrs C-22,
12 (Dec 1973), 1087-1099

3 H1RSCHBERG, D S A linear space algorithm for computing maximal common subsequences Comm ACM
18, 6 (June 1975), 341-343

4 HIRSCHaERG, D S Algorithms for the longest common subsequence problem J ACM 24, 4 (Oct 1977),
664-675

5 HUNT, J W, AriD SZYMANSKt, T G A fast algorithm for computing longest common subsequences Comm
ACM 20, 5 (May 1977), 350-353

6 KNUTIt, D E TheArt of Computer Programming, Vol I FundamentalAlgorlthms Addison-Wesley, Reading,
Mass, sec ed, 1973

7 LOWRANCE, R, AND WAGNER, R A An extension of the string-to-string correction problem J A CM 22, 2
(April 1975), 177-183

8 SANKOrF, D Matching sequences under deletion/insertion constraints Proc Nat Acad Scl USA 69, 1 (Jan
1974), 4-6

9 SELKOW, S M The tree-to-tree editing problem Inform Processing Letters 6, 6 (Dec 1977), 184-186
l0 SELLERS, P H An algorithm for the distance between two fimte sequences J Combm Theory, Set A, 16

(1974), 253-258
I l TAI, K C Syntactic error correction m programming languages Ph D Th, Dept Comptr. Sci, Cornell U,

Ithaca, N Y, 1977
12 WAGNER, R A On the complexity of the extended stnng-to-stnng correctton problem Proc Seventh Annual

ACM Symp on Theory of Comptng, Albuquerque, New Mex, 1975, pp 218-223
13 WAGNER, R A , AND FISCHER, M J The stnng-to-strlng correction problem. J ACM 21, I (Jan 1974), 168-

173
14 WONG, C K, AND CHANDRA, A K Bounds for the string editing problem J. ACM 23, 1 (Jan 1976), 13-16

RECEIVED MARCH 1977, REVISED JANUARY 1979

Jourllal of the Assoclatton for Computing Machinery, Vol 26, No 3, July 1979

